Skip to main content

Targeting Reward-Relevant Nicotinic Receptors in the Discovery of Novel Pharmacotherapeutic Agents to Treat Tobacco Dependence

  • Chapter
  • First Online:

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 55))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alkondon, M., Pereira, E. F., Wonnacott, S., & Albuquerque, E. X. (1992). Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Molecular Pharmacology, 41(4), 802–808.

    PubMed  Google Scholar 

  • Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P., & Crooks, P. A. (2003). Active transport of high affinity choline and nicotine analogs into the central nervous system by the blood brain barrier choline transporter. Journal of Pharmacology and Experimental Therapeutics, 304, 1268–1274.

    PubMed  Google Scholar 

  • Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., & Lindstrom, J. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. Journal of Biological Chemistry, 266(17), 11192–11198.

    PubMed  Google Scholar 

  • Ayers, J. T., Clauset, A., Schmitt, J. D., Dwoskin, L. P., & Crooks, P. A. (2005). Molecular modeling of mono- and bis-quaternary ammonium salts as ligands at the alpha4beta2 nicotinic acetylcholine receptor subtype using nonlinear techniques. The AAPS Journal, 7(3), E678–E685.

    PubMed  Google Scholar 

  • Ayers, J. T., Dwoskin, L. P., Deaciuc, A. G., Grinevich, V. P., Zhu, J., & Crooks, P. A. (2002). Bis-Azaaromatic quaternary ammonium analogues: ligands for alpha4beta2* and alpha 7* subtypes of neuronal nicotinic receptors. Bioorganic & Medicinal Chemistry Letters, 12(21), 2067–3071.

    Google Scholar 

  • Azam, L., Winzer-Serhan, U. H., Chen, Y., & Leslie, F. M. (2002). Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. Journal of Comparative Neurology, 444(3), 260–274.

    PubMed  Google Scholar 

  • Balfour, D. J. (2002). The neurobiology of tobacco dependence: a commentary. Respiration, 69, 7–11.

    PubMed  Google Scholar 

  • Balfour, D. J. (2004). The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine & Tobacco Research, 6(6), 899–912.

    Google Scholar 

  • Bardo, M. T. (1998). Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Critical Reviews in Neurobiology, 12(1–2), 37–67.

    PubMed  Google Scholar 

  • Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105(4), 849–456.

    PubMed  Google Scholar 

  • Benwell, M. E., Balfour, D. J., & Birrell, C. E. (1995). Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. British Journal of Pharmacology, 114(2), 454–460.

    PubMed  Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Brain Research Reviews, 28, 309–369.

    PubMed  Google Scholar 

  • Bonci, A., Bernardi, G., Grillner, P., & Mercuri, N. B. (2003). The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction? Trends in Pharmacological Sciences, 24(4), 172–177.

    PubMed  Google Scholar 

  • Brazell, M. P., Mitchell, S. N., Joseph, M. H., & Gray, J. A. (1990). Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate-putamen. Neuropharmacology, 29(12), 1177–1185.

    PubMed  Google Scholar 

  • Brody, A. L., Mandelkern, M. A., Lee, G., Smith, E., Sadeghi, M., Saxena, S., et al. (2004). Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry Research, 130(3), 269–281.

    PubMed  Google Scholar 

  • Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2002). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology, 163: 230–237.

    PubMed  Google Scholar 

  • Castro, N. G., & Albuquerque, E. X. (1995). alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophysical Journal, 68(2), 516–524.

    PubMed  Google Scholar 

  • Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., et al., (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. The Journal of Neuroscience, 23(21), 7820–7829.

    PubMed  Google Scholar 

  • Charpantier, E., Barneoud, P., Moser, P., Besnard, F., & Sgard, F. (1998). Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport, 9(13), 3097–3101.

    PubMed  Google Scholar 

  • Clarke, P. B., & Pert, A. (1985). Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Research, 348(2), 355–358.

    PubMed  Google Scholar 

  • Coe, J. W., Brooks, P. R., Vetelino, M. G., Wirtz, M. C., Arnold, E. P., Huang, J., et al. (2005). Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. Journal of Medicinal Chemistry, 48(10), 3474–3477.

    PubMed  Google Scholar 

  • Conroy, W. G., Vernallis, A. B., & Berg, D. K. (1992). The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron, 9(4), 670–691.

    Google Scholar 

  • Cooper, E., Couturier, S., & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature, 350(6315), 235–238.

    PubMed  Google Scholar 

  • Corrigall, W. A. (1999). Nicotine self-administration in animals as a dependence model. Nicotine & Tobacco Research, 1(1), 11–20.

    Google Scholar 

  • Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.

    Google Scholar 

  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.

    PubMed  Google Scholar 

  • Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl),107(2–3), 285–289.

    Google Scholar 

  • Corringer, P. J., Sallette, J., & Changeux, J. P. (2006). Nicotine enhances intracellular nicotinic receptor maturation: a novel mechanism of neural plasticity? Journal of Physiology, Paris, 99(2–3), 162–171.

    PubMed  Google Scholar 

  • Crooks P. A., & Dwoskin L. P. (1997). Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochemical Pharmacology, 54, 743–753.

    PubMed  Google Scholar 

  • Crooks, P. A., Ayers, J. T., Haubner, A. J., Grinevich, V. P., Sumithran, S. P., Deaciuc, A. G., et al. (2002) The bis-picolinium salt, bPiDDB, is a potent and selective antagonist at nicotinic acetylcholine receptors mediating nicotine-evoked dopamine release in rat striatum. Drug and Alcohol Dependence, 64, 38.

    Google Scholar 

  • Crooks, P. A., Ayers, J. T., Xu, R., Sumithran, S. P., Grinevich, V. P., Wilkins, L. H., Deaciuc, A. G., Allen, D. D., & Dwoskin, L. P. (2004). Development of subtype-selective ligands as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release. Bioorganic & Medicinal Chemistry Letters, 14(8), 1869–1874.

    Google Scholar 

  • Cui, C., Booker, T. K., Allen, R. S., Grady, S. R., Whiteaker, P., Marks, M. J., et al. (2003). The β3 nicotinic receptor subunit: A component of α-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. Journal of Neuroscience, 23, 11045–11053.

    PubMed  Google Scholar 

  • Dani, J. A. (2003). Roles of dopamine signaling in nicotine addiction. Molecular Psychiatry, 8(3), 255–256.

    PubMed  Google Scholar 

  • Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729.

    PubMed  Google Scholar 

  • Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, Biochemistry and Behavior, 70(4), 439–446.

    Google Scholar 

  • Dani, J. A., & Harris, R. A. (2005). Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 8(11), 1465–1470.

    PubMed  Google Scholar 

  • Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31(3), 349–352.

    PubMed  Google Scholar 

  • Deneris, E. S., Boulter, J., Swanson, L. W., Patrick, J., & Heinemann, S. (1989). Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in the brain. Journal of Biological Chemistry, 264(11), 6268–6272.

    PubMed  Google Scholar 

  • Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393, 295–314.

    PubMed  Google Scholar 

  • Di Chiara, G., Bassareo, V., Fenu, S., De Luca, M. A., Spina, L., Cadoni, C., Acquas, E., Carboni, E., Valentini, V., & Lecca, D. (2004). Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 47, 227–241.

    PubMed  Google Scholar 

  • Dwoskin, L. P., Sumithran, S. P., Zhu, J., Deaciuc, A. G., Ayers, J. T., & Crooks, P. A. (2004). Subtype-selective nicotinic receptor antagonists: potential as tobacco use cessation agents. Bioorganic & Medicinal Chemistry Letters, 14, 1863–1867.

    Google Scholar 

  • Dwoskin, L. P., Teng, L. H., Buxton, S. T., Ravard, A., Deo, N., & Crooks, P. A. (1995). Minor alkaloids of tobacco release [3H]dopamine release from superfused rat striatal slices. European. Journal of. Pharmacology, 276,195–199.

    PubMed  Google Scholar 

  • Donny, E. C., Chaudhri, N., Caggiula, A. R., Evans-Martin, F. F., Booth, S., Gharib, M. A., et al. (2003). Operant responding for a visual reinforcer in rats in enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl), 169(1), 68–76.

    Google Scholar 

  • Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B., & Kellar, K. J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Molecular Pharmacology, 41(1), 31–37.

    PubMed  Google Scholar 

  • Forsayeth, J. R., & Kobrin, E. (1997). Formation of oligomers containing the beta 3 and beta 4 subunits of the rat nicotinic receptor. Journal of Neuroscience, 17(5), 1531–1538.

    PubMed  Google Scholar 

  • Fu, Y., Matta, S. G., Gao, W., & Sharp, B. M. (2000). Local alpha-bungarotoxin-sensitive nicotinic receptors in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience, 101(2), 369–375.

    PubMed  Google Scholar 

  • Ghosheh, O., Dwoskin, L. P., Li, W. K., & Crooks, P. A. (1999). Residence time and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2'-14C]nicotine. Drug Metabolism and Disposition, 27, 1448–1455.

    PubMed  Google Scholar 

  • Ghosheh O. A., Dwoskin L. P., Miller D. K. and Crooks P. A. (2001). Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2'-14C]-nicotine. Drug Metabolism and Disposition, 29, 645–651.

    PubMed  Google Scholar 

  • George, T. P., & O’Malley, S. S. (2004). Current pharmacological treatments for nicotine dependence. Trends in Pharmacological Sciences, 25(1), 42–48.

    PubMed  Google Scholar 

  • Goldner, F. M., Dineley, K. T., & Patrick, J. W. (1997). Immunohistochemical localization of the nicotinic acetylcholine receptor subunit alpha 6 to dopaminergic neurons in the substantia nigra and ventral tegmental area. Neuroreport, 8(12), 2739–2742.

    PubMed  Google Scholar 

  • Gotti, C., Moretti, M., Clementi, F., Riganti, F., McIntosh, J. M., Collins, A. C., et al. (2005). Expression of nigrostriatal α6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by β3 subunit gene deletion. Molecular Pharmacology, 67, 2007–2015.

    PubMed  Google Scholar 

  • Gotti, C., Zoli, M., & Clementi, F. (2006). Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacological Sciences, 27(9), 482–491.

    PubMed  Google Scholar 

  • Grady, S. R., Grun, E. U., Marks, M. J., & Collins, A. C. (1997). Pharmacological comparisons of transient and persistent [3H]dopamine release from mouse striatal synaptosomes and response to chronic L-nicotine treatment. The Journal of Pharmacology and Experimental Therapeutics, 282, 32–43.

    PubMed  Google Scholar 

  • Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Changeux, J-P., et al. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 76, 258–226.

    PubMed  Google Scholar 

  • Grady, S. R., Murphy, K. L., Cao, J., Marks, M. J., McIntosh, J. M., & Collins, A. C. (2002). Characterization of nicotinic agonist-induced [(3)H]dopamine release from synaptosomes prepared from four mouse brain regions. Journal of Pharmacology and Experimental Therapeutics, 301(2), 651–660.

    PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713–716.

    PubMed  Google Scholar 

  • Grinevich, V. P., Crooks, P. A., Sumithran, S. P., Haubner, A. J., Ayers, J. T., & Dwoskin, L. P. (2003). N-n-Alkylpyridinium analogs, a novel class of nicotinic receptor antagonists: selective inhibition of nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. The Journal of Pharmacology and Experimental Therapeutics, 306(3), 1011–1020.

    PubMed  Google Scholar 

  • Grottick, A. J., Trube, G., Corrigall, W. A., Huwyler, J., Malherbe, P., Wyler, R., et al. (2000). Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. The Journal of Pharmacology and Experimental Therapeutics, 294(3), 1112–1119.

    PubMed  Google Scholar 

  • Hurt, R. D., Krook, J. E., Croghan, I. T., Loprinzi, C. L., Sloan, J. A., Novotny, P. J., et al. (2003). Nicotine patch therapy based on smoking rat followed by bupropion for prevention of relapse to smoking. Journal of Clinical Oncology, 21(5), 914–920.

    PubMed  Google Scholar 

  • Imperato, A., Mulas, A., & Dichiara, G. (1986). Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology, 132 (2–3), 337–338.

    PubMed  Google Scholar 

  • Irvin, J. E., Hendricks, P. S., & Brandon, T. H. (2003). The increasing recalcitrance of smokers in clinical trials II: Pharmacotherapy trials. Nicotine & Tobacco Research, 5(1), 27–35.

    Google Scholar 

  • Jones, I. W., Bolam, J. P., & Wonnacott, S. (2001). Presynaptic localization of the nicotinic acetylcholine receptor beta 2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurons. The Journal of Comparative Neurology, 439(2), 235–247.

    PubMed  Google Scholar 

  • Kaiser, S. A., Soliakov, L., Harvey, S. C., Luetje, C. W., & Wonnacott, S. (1998). Differential inhibition by α-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. Journal of Neurochemistry, 70, 1069–1076.

    PubMed  Google Scholar 

  • Kenny, P. J., & Markou, A. (2006). Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology, 31, 1203–1211.

    PubMed  Google Scholar 

  • Klink, R., de Kerchove d’Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. Journal of Neuroscience, 21(5), 1452–1463.

    PubMed  Google Scholar 

  • Koob, G. F. (1992). Neural mechanisms of drug reinforcement. Annals of New York Academy of Sciences, 654, 171–191.

    Google Scholar 

  • Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. Annals of New York Academy of Sciences, 877, 445–46.

    Google Scholar 

  • Kulak, J. M., McIntosh, J. M., Yoshikami, D., & Olivera, B. M. (2001). Nicotine-evoked transmitter release from synaptosomes: functional association of specific presynaptic acetylcholine receptors and voltage-gated calcium channels. Journal of Neurochemistry, 77, 1581–1589.

    PubMed  Google Scholar 

  • Kulak, J. M., Nguyen, T. A., Olivera, B. M., & McIntosh, J. M. (1997). Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. Journal of Neuroscience, 17(14), 5263–5270.

    PubMed  Google Scholar 

  • Kuryatov, A., Olale, F., Cooper, J., Choi, C., & Lindstrom, J. (2000). Human alpha6 AChR subtypes: subunit composition, assembly and pharmacological responses. Neuropharmacology, 38(13), 2570–2590.

    Google Scholar 

  • Le Novere, N., Zoli, M., & Changeux, J. P. (1996). Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. European Journal of Neuroscience, 8(11), 2428–2439.

    PubMed  Google Scholar 

  • Liu, X., Caggiula, A. R., Yee, S. K., Nobuta, H., Sved, A. F., Pechnick, R. N., et al. (2007). Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology, 32(3), 710–718.

    PubMed  Google Scholar 

  • Lopez-Hernandez, G. Y., Sanchez-Padilla, J., Ortiz-Acevedo, A., Lizardi-Ortiz, J., Salas-Vincenty, J., Rojas, L. V., et al. (2004). Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio. Journal of Biological Chemistry, 279(36), 38007–38015.

    PubMed  Google Scholar 

  • Lundahl, L. H., Henningfield, J. E., & Lukas, S. E. (2000). Mecamylamine blockade of both positive and negative effects of IV nicotine in human volunteers. Pharmacology, Biochemistry, and Behavior, 66(3), 637–643.

    PubMed  Google Scholar 

  • Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.

    PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27(2), 349–357.

    PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2002). Cellular and synaptic mechanisms of nicotine addiction. Journal of Neurobiology, 53(4), 606–617.

    PubMed  Google Scholar 

  • Markou, A., & Paterson, N. E. (2001). The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine and Tobacco Research, 3(4), 361–373.

    PubMed  Google Scholar 

  • Martin-Soelch, C., Leenders, K. L., Chevalley, A. F., Missimer, J., Kunig, G., Magyar, S., et al. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Review, 26(2–3), 139–149.

    Google Scholar 

  • McCallum, S. E., Parameswaran, N., Bordia, T., McIntosh, J. M., Grady, S. R., & Quik, M. (2005). Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Molecular Pharmacology, 68(3), 737–746.

    PubMed  Google Scholar 

  • McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1681–1682.

    Google Scholar 

  • McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology, 57, 521–546.

    PubMed  Google Scholar 

  • McIntosh, J. M., Olivera, B. M., & Cruz, L. J. (1999). Conus peptides as probes for ion channels. Methods in Enzymology, 294, 605–624.

    PubMed  Google Scholar 

  • McIntosh, J. M., Santos, A. D., & Olivera, B. M. (1999). Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annual Review of Biochemistry, 68, 59–88.

    PubMed  Google Scholar 

  • Mihalak, K. B., Carroll, F. I., & Luetje, C. W. (2006). Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Molecular Pharmacology, 70(3), 801–805.

    PubMed  Google Scholar 

  • Miller, D. K., Sumithran, S. P., & Dwoskin, L. P. (2002). Bupropion inhibits nicotine-evoked [3H]overflow from rat striatal slices preloaded with [3H]dopamine and from rat hippocampal slices preloaded with [3H]norepinephrine. The Journal of Pharmacology and Experimental Therapeutics, 203(3), 1113–1122.

    Google Scholar 

  • Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y., & Lindstrom, J. (2003). Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Molecular Pharmacology, 63(2), 332–341.

    PubMed  Google Scholar 

  • Neugebauer, N. M., Zhang, Z., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2006). Effect of a novel nicotinic receptor antagonist, N,N’dodecane-1,12-diyl-bis-3-picolinium dibromide, on nicotine self-administration and hyperactivity in rats. Psychopharmacology (Berl), 184(3–4), 426–434.

    Google Scholar 

  • Niaura, R., Shadel, W. G., Abrams, D. B., Monti, P. M., Rohsenow, D. J., & Sirota, A. (1998). Individual differences in cue reactivity among smokers trying to quit: effects of gender and cue type. Addictive Behaviors, 23(2), 209–224.

    PubMed  Google Scholar 

  • Nicke, A., Wonnacott, S., & Lewis, R. J. (2004). Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. European Journal of Biochemistry, 271(12), 2305–2319.

    PubMed  Google Scholar 

  • Nisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse, 16(1), 36–44.

    PubMed  Google Scholar 

  • Nomikos ,G. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1989). Acute effects of bupropion on extracellular dopamine concentrations in rat striatum and nucleus accumbens studied by in vivo microdialysis. Neuropsychopharmacology, 2(4), 273–279.

    PubMed  Google Scholar 

  • Nomikos, G. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1992). Effects of chronic bupropion on interstitial concentrations of dopamine in rat nucleus accumbens and striatum. Neuropsychopharmacology, 7(1), 7–14.

    PubMed  Google Scholar 

  • Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., et al., (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184, 391–400.

    PubMed  Google Scholar 

  • Palmatier, M. I., Liu, X., Caggiula, A. R., Donny, E. C., & Sved, A. F. (2007). The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine. Neuropsychopharmacology, 32, 1098–1108.

    PubMed  Google Scholar 

  • Papke, R. L., Dwoskin, L. P., & Crooks, P. A. (2007). The pharmacological fingerprint of nAChRs subtypes utilizing nicotine and nornicotine: relevance to nicotine dependence and drug discovery. Journal of Neurochemistry, 101(1), 160–167.

    PubMed  Google Scholar 

  • Perkins, K. A., Epstein, L. H., Grobe, J., & Fonte, C. (1994). Tobacco abstinence, smoking cues, and the reinforcing value of smoking. Pharmacology, Biochemistry, and Behavior, 47(1), 107–112.

    PubMed  Google Scholar 

  • Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.

    PubMed  Google Scholar 

  • Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.

    PubMed  Google Scholar 

  • Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning and Memory, 11(1), 60–69.

    PubMed  Google Scholar 

  • Pivavarchyk, M., Zhang, Z., Crooks, P. A., & Dwoskin, L. P. (2007). Tetrakis quaternary ammonium salts: novel nicotinic receptor antagonists which inhibit nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. Society for Neuroscience Abstract, 37, 78.12.

    Google Scholar 

  • Pomerleau, C. S., & Pomerleau, O. F. (1992). Euphoriant effects of nicotine in smokers. Pychopharmacology (Berl), 108, 460–465.

    Google Scholar 

  • Pontieri, F. E., Tanda, G., Orzi, F., & Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382(6588), 255–257.

    PubMed  Google Scholar 

  • Poth, K., Nutter, T. J., Cuevas, J., Parker, M. J., Adams, D. J., & Luetje, C. W. (1997). Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. Journal of Neuroscience, 17(2), 586–596.

    PubMed  Google Scholar 

  • Quarta, D., Ciruela, F., Patkar, K., Borycz, J., Solinas, M., Lluis, C., et al. (2007). Heteromeric nicotinic acetylcholine-dopamine autoreceptor complexes modulate striatal dopamine release. Neuropsychopharmacology, 32(1), 35–42.

    PubMed  Google Scholar 

  • Rahman, S., Neugebauer, N. M., Zhang, Z., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2007). The effects of a novel nicotinic receptor antagonist N,N’-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology, 52(3), 755–763.

    PubMed  Google Scholar 

  • Rahman, S., Zhang, J., & Corrigall, W. A. (2004). Effects of nicotine preexposure on sulpiride-induced dopamine release in the nucleus accumbens. European Journal of Pharmacology, 494(1), 31–34.

    PubMed  Google Scholar 

  • Rahman, S., Zhang, Z., Papke, R. L., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2008). Region-specific effects of N,N’dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on nicotine-induced increase in extracellular dopamine in vivo. British Journal of Pharmacology, 153, 792–804.

    Google Scholar 

  • Rauhut, A. S., Neugebauer, N., Dwoskin, L. P., & Bardo, M. T. (2003). Effect of bupropion on nicotine self-administration in rats. Psychopharmacology (Berl), 169, 1–9.

    Google Scholar 

  • Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience, 7(6), 583–584.

    PubMed  Google Scholar 

  • Rose, J. E., & Behm, F. M. (2004). Extinguishing the rewarding value of smoke cues: pharmacological and behavioral treatments. Nicotine & Tobacco Research, 6(3), 523–532.

    Google Scholar 

  • Rose, J. E., Behm, F. M., Westman, E. C., Levin, E. D., Stein, R. M., & Ripka, G. V. (1994). Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clinical Pharmacology and Therapeutics, 56(1), 86–99.

    PubMed  Google Scholar 

  • Rose, J. E., Westman, E. C., Behm, F. M., Johnson, M. P., & Goldberg, J. S. (1999). Blockade of smoking satisfaction using the peripheral nicotinic antagonist trimethaphan. Pharmacology, Biochemistry, and Behavior, 62(1), 165–172.

    PubMed  Google Scholar 

  • Salminen, O., Drapeau, J. A., McIntosh, J. M., Collins, A. C., Marks, M. J., & Grady, S. R. (2007). Pharmacology of α-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Molecular Pharmacology, 71, 1563–1571.

    Google Scholar 

  • Salminen, O., Murphy, K. L., McIntosh, J. M., Drago, J., Marks, M. J., Collins, A. C., et al. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65, 1526–1535.

    PubMed  Google Scholar 

  • Scholze, P., Orr-Urtreger, A., Changeux, J. P., McIntosh, J. M., & Huck, S. (2007). Catecholamine outflow from mouse and rat brain slice preparations evoked by nicotinic acetylcholine receptor activation and electrical field stimulation. British Journal of Pharmacology, 151(3), 414–422.

    PubMed  Google Scholar 

  • Shima, K., & Tanji, J. (1998). Role for cingulated motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.

    PubMed  Google Scholar 

  • Singer, G., Wallace, M., & Hall, R. (1982). Effects of dopaminergic nucleus accumbens lesions on the acquisition of schedule induced self injection of nicotine in the rat. Pharmacology, Biochemistry, and Behavior, 17(3), 579–581.

    PubMed  Google Scholar 

  • Slemmer, J. E., Martin, B. R., & Damaj, M. I. (2000). Bupropion is a nicotinic antagonist. The Journal of Pharmacology and Experimental Therapeutics, 295(1), 321–327.

    PubMed  Google Scholar 

  • Soliakov, L., & Wonnacott, S. (1996). Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. Journal of Neurochemistry, 67, 163–170.

    PubMed  Google Scholar 

  • Spanagel, R., & Weiss, F. (1999). The dopamine hypothesis of reward: past and current status. Trends in Neuroscience, 22(11), 521–527.

    Google Scholar 

  • Stokes, C., Dwoskin, L. P., Crooks, P. A., Jacobs, L. B., McIntosh, J. M., & Papke, R. L. (2007). The identification of selective competitive and noncompetitive nAChR antagonists using alpha6 nicotinic acetylcholine receptor chimeras. Society for Neuroscience Abstract, 37, 574.4.

    Google Scholar 

  • Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology, 117(1), 2–10.

    PubMed  Google Scholar 

  • Sumithran, S. P., Crooks, P. A., Xu, R., Zhu, J., Deaciuc, A. G., Wilkins, L. H., et al. (2005). Introduction of unsaturation into the N-n-alkyl chain of the nicotinic receptor antagonists, NONI and NDNI: effect on affinity and selectivity. American Association of Pharmaceutical Scientists Journal, 7(1), E201–217.

    PubMed  Google Scholar 

  • Tapper, A. R., McKinney, S. L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., et al. (2004). Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science, 306(5698), 983–985.

    Google Scholar 

  • Teng, L., Crooks, P. A., Buxton, S. T., & Dwoskin, L. P. (1997). Nicotinic-receptor mediation of S(-)nornicotine-evoked [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. The Journal of Pharmacology and Experimental Therapeutics, 280(3), 1432–1444.

    PubMed  Google Scholar 

  • Vann, R. E., Rosecrans, J. A., James, J. R., Philibin, S. D., & Robinson, S. E. (2006). Neurochemical and behavioral effects of bupropion and mecamylamine in the presence of nicotine. Brain Research, 1117, 18–24.

    PubMed  Google Scholar 

  • Wada, E., McKinnon, D., Heinemann, S., Patrick, J., & Swanson, L. W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor family (alpha 5) in the rat central nervous system. Brain Research, 526(1), 45–53.

    PubMed  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. The Journal Comparative Neurology, 284(2), 314–335.

    Google Scholar 

  • Walters, C. L., Brown, S., Changeux, J. P., Martin, B., & Damaj, M. I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology, 184(3–4), 339–344.

    PubMed  Google Scholar 

  • Wei, X., Sumithran, S. P., Deaciuc, A. G., Burton, H. R., Bush, L. P., Dwoskin, L. P., et al. (2005). Identification and synthesis of novel alkaloids from the root system of Nicotiana tabacum: Affinity for neuronal nicotinic acetylcholine receptors. Life Sciences, 78, 495–505.

    PubMed  Google Scholar 

  • Whiteaker, P., Marks, M. J., Grady, S. R., Lu, Y., Picciotto, M. R., Changeux, J. P., et al. (2000). Pharmacological and null mutation approaches reveal nicotinic receptor diversity. European Journal of Pharmacology, 393(1–3), 123–135.

    PubMed  Google Scholar 

  • Wilkins, L. H., JR., Grinevich, V. P., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2003). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonists: interaction with α4β2* and α7* neuronal nicotinic receptors. The Journal of Pharmacology and Experimental Therapeutics, 304(1), 400–410.

    PubMed  Google Scholar 

  • Wilkins, L. H., Haubner, A., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2002). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonist: inhibition of S(-)-nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. The Journal of Pharmacology and Experimental Therapeutics, 301(3), 1088–1096.

    PubMed  Google Scholar 

  • Wilkins, L. H., Miller, D. K., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2006). N-n-Alkylnicotinium analogs, a novel class of antagonists at alpha 4 beta 2* nicotinic receptors: inhibition of S(-)-nicotine-evoked 86Rb+ efflux from rat thalamic synaptosomes. American Association of Pharmaceutical Scientists Journal, 7(4), E922–930.

    PubMed  Google Scholar 

  • Wise, R. A. (1996). Neurobiology of addiction. Current Opinion in Neurobiology, 6(2), 243–251.

    PubMed  Google Scholar 

  • Wise, R. A. (2000). Addiction becomes a brain disease. Neuron, 26, 27–33.

    PubMed  Google Scholar 

  • Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94(4), 469–492.

    PubMed  Google Scholar 

  • Wonnacott, S. (1997). Presynaptic nicotinic Ach receptors. Trends in Neuroscience, 20(2), 92–98.

    Google Scholar 

  • Wonnacott, S., Kaiser, S., Mogg, A., Soliakov, L., & Jones, I. W. (2000). Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology, 393(1–3), 51–58.

    PubMed  Google Scholar 

  • Wonnacott, S., Sidhpura, N., & Balfour, D. J. (2005). Nicotine: from molecular mechanisms to behaviour. Current Opinion in Pharmacology, 5(1), 53–59.

    PubMed  Google Scholar 

  • Wooltorton, J. R.A., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. Journal of Neuroscience, 23(8), 3176–3185.

    PubMed  Google Scholar 

  • Zheng, F., Bayram, E., Sumithran, S. P., Ayers, J. T., Zhan, C. G., Schmitt, J. D., et al. (2006). QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorganic & Medicinal Chemistry, 14(9), 3017–3037.

    Google Scholar 

  • Zhang, Z., Lockman, P. R., Geldenhuys, W. J., Allen, D. D., Dwoskin, L. P., & Crooks, P. A. (2005). Synthesis of bis-pyridinium analogs and structurally related cyclophanes with high affinity for the blood brain barrier choline transporter. American Association Pharmaceutical Scientists, PharmSci (Supplement), 7(S2), Abstract W4079.

    Google Scholar 

  • Zhou, F. M., Liang, Y., & Dani, J. A. (2001). Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4(12), 1224–1229.

    PubMed  Google Scholar 

  • Zoli, M., Moretti, M., Zanardi, A., McIntosh, J. M., Clementi, F., & Gotti, C. (2002). Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. Journal of Neuroscience, 22(20), 8785–8789.

    PubMed  Google Scholar 

  • Zwart, R., & Vijverberg, H. P. (1998). Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Molecular Pharmacology, 54(6), 1124–1131.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Cooperative Drug Discovery Group research grant NIH U19 DA017548.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dwoskin, L.P. et al. (2008). Targeting Reward-Relevant Nicotinic Receptors in the Discovery of Novel Pharmacotherapeutic Agents to Treat Tobacco Dependence. In: Caggiula, A., Bevins, R. (eds) The Motivational Impact of Nicotine and its Role in Tobacco Use. Nebraska Symposium on Motivation, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78748-0_4

Download citation

Publish with us

Policies and ethics