Advertisement

Targeting Reward-Relevant Nicotinic Receptors in the Discovery of Novel Pharmacotherapeutic Agents to Treat Tobacco Dependence

  • Linda P. Dwoskin
  • Marharyta Pivavarchyk
  • B. Matthew Joyce
  • Nichole M. Neugebauer
  • Guangrong Zheng
  • Zhenfa Zhang
  • Michael T. Bardo
  • Peter A. Crooks
Chapter
Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)

Introduction

Tobacco Alkaloids and Tobacco Use

Tobacco dependence is a significant health concern and the most preventable cause of death in the United States. Tobacco (Nicotiana tabacum) contains numerous pharmacologically active alkaloids of which nicotine is considered to be the primary alkaloid responsible for tobacco dependence (Balfour, 2002; Pomerleau & Pomerleau, 1992). Studies investigating the effects of minor tobacco alkaloids have demonstrated their pharmacological activity and interaction with nicotinic acetylcholine receptors (nAChRs; Dwoskin et al., 1995; Papke, Dwoskin & Crooks, 2007; Wei et al., 2005). In particular, the minor tobacco alkaloid and nicotine metabolite, nornicotine, likely contributes to tobacco dependence (Crooks & Dwoskin, 1997; Ghosheh, Dwoskin, Li, & Crooks, 1999; Ghosheh, Dwoskin, Miller, & Crooks, 2001) and warrants further investigation.

Nicotinic Receptor-Mediated Dopamine Release in Nicotine Reward

Nicotine acts as an agonist at all known nAChR...

Notes

Acknowledgments

This work was supported by a National Cooperative Drug Discovery Group research grant NIH U19 DA017548.

References

  1. Alkondon, M., Pereira, E. F., Wonnacott, S., & Albuquerque, E. X. (1992). Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Molecular Pharmacology, 41(4), 802–808.PubMedGoogle Scholar
  2. Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P., & Crooks, P. A. (2003). Active transport of high affinity choline and nicotine analogs into the central nervous system by the blood brain barrier choline transporter. Journal of Pharmacology and Experimental Therapeutics, 304, 1268–1274.PubMedGoogle Scholar
  3. Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., & Lindstrom, J. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. Journal of Biological Chemistry, 266(17), 11192–11198.PubMedGoogle Scholar
  4. Ayers, J. T., Clauset, A., Schmitt, J. D., Dwoskin, L. P., & Crooks, P. A. (2005). Molecular modeling of mono- and bis-quaternary ammonium salts as ligands at the alpha4beta2 nicotinic acetylcholine receptor subtype using nonlinear techniques. The AAPS Journal, 7(3), E678–E685.PubMedGoogle Scholar
  5. Ayers, J. T., Dwoskin, L. P., Deaciuc, A. G., Grinevich, V. P., Zhu, J., & Crooks, P. A. (2002). Bis-Azaaromatic quaternary ammonium analogues: ligands for alpha4beta2* and alpha 7* subtypes of neuronal nicotinic receptors. Bioorganic & Medicinal Chemistry Letters, 12(21), 2067–3071.Google Scholar
  6. Azam, L., Winzer-Serhan, U. H., Chen, Y., & Leslie, F. M. (2002). Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. Journal of Comparative Neurology, 444(3), 260–274.PubMedGoogle Scholar
  7. Balfour, D. J. (2002). The neurobiology of tobacco dependence: a commentary. Respiration, 69, 7–11.PubMedGoogle Scholar
  8. Balfour, D. J. (2004). The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine & Tobacco Research, 6(6), 899–912.Google Scholar
  9. Bardo, M. T. (1998). Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Critical Reviews in Neurobiology, 12(1–2), 37–67.PubMedGoogle Scholar
  10. Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105(4), 849–456.PubMedGoogle Scholar
  11. Benwell, M. E., Balfour, D. J., & Birrell, C. E. (1995). Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. British Journal of Pharmacology, 114(2), 454–460.PubMedGoogle Scholar
  12. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Brain Research Reviews, 28, 309–369.PubMedGoogle Scholar
  13. Bonci, A., Bernardi, G., Grillner, P., & Mercuri, N. B. (2003). The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction? Trends in Pharmacological Sciences, 24(4), 172–177.PubMedGoogle Scholar
  14. Brazell, M. P., Mitchell, S. N., Joseph, M. H., & Gray, J. A. (1990). Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate-putamen. Neuropharmacology, 29(12), 1177–1185.PubMedGoogle Scholar
  15. Brody, A. L., Mandelkern, M. A., Lee, G., Smith, E., Sadeghi, M., Saxena, S., et al. (2004). Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry Research, 130(3), 269–281.PubMedGoogle Scholar
  16. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2002). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology, 163: 230–237.PubMedGoogle Scholar
  17. Castro, N. G., & Albuquerque, E. X. (1995). alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophysical Journal, 68(2), 516–524.PubMedGoogle Scholar
  18. Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., et al., (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. The Journal of Neuroscience, 23(21), 7820–7829.PubMedGoogle Scholar
  19. Charpantier, E., Barneoud, P., Moser, P., Besnard, F., & Sgard, F. (1998). Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport, 9(13), 3097–3101.PubMedGoogle Scholar
  20. Clarke, P. B., & Pert, A. (1985). Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Research, 348(2), 355–358.PubMedGoogle Scholar
  21. Coe, J. W., Brooks, P. R., Vetelino, M. G., Wirtz, M. C., Arnold, E. P., Huang, J., et al. (2005). Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. Journal of Medicinal Chemistry, 48(10), 3474–3477.PubMedGoogle Scholar
  22. Conroy, W. G., Vernallis, A. B., & Berg, D. K. (1992). The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron, 9(4), 670–691.Google Scholar
  23. Cooper, E., Couturier, S., & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature, 350(6315), 235–238.PubMedGoogle Scholar
  24. Corrigall, W. A. (1999). Nicotine self-administration in animals as a dependence model. Nicotine & Tobacco Research, 1(1), 11–20.Google Scholar
  25. Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.Google Scholar
  26. Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.PubMedGoogle Scholar
  27. Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl),107(2–3), 285–289.Google Scholar
  28. Corringer, P. J., Sallette, J., & Changeux, J. P. (2006). Nicotine enhances intracellular nicotinic receptor maturation: a novel mechanism of neural plasticity? Journal of Physiology, Paris, 99(2–3), 162–171.PubMedGoogle Scholar
  29. Crooks P. A., & Dwoskin L. P. (1997). Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochemical Pharmacology, 54, 743–753.PubMedGoogle Scholar
  30. Crooks, P. A., Ayers, J. T., Haubner, A. J., Grinevich, V. P., Sumithran, S. P., Deaciuc, A. G., et al. (2002) The bis-picolinium salt, bPiDDB, is a potent and selective antagonist at nicotinic acetylcholine receptors mediating nicotine-evoked dopamine release in rat striatum. Drug and Alcohol Dependence, 64, 38.Google Scholar
  31. Crooks, P. A., Ayers, J. T., Xu, R., Sumithran, S. P., Grinevich, V. P., Wilkins, L. H., Deaciuc, A. G., Allen, D. D., & Dwoskin, L. P. (2004). Development of subtype-selective ligands as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release. Bioorganic & Medicinal Chemistry Letters, 14(8), 1869–1874.Google Scholar
  32. Cui, C., Booker, T. K., Allen, R. S., Grady, S. R., Whiteaker, P., Marks, M. J., et al. (2003). The β3 nicotinic receptor subunit: A component of α-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. Journal of Neuroscience, 23, 11045–11053.PubMedGoogle Scholar
  33. Dani, J. A. (2003). Roles of dopamine signaling in nicotine addiction. Molecular Psychiatry, 8(3), 255–256.PubMedGoogle Scholar
  34. Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729.PubMedGoogle Scholar
  35. Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, Biochemistry and Behavior, 70(4), 439–446.Google Scholar
  36. Dani, J. A., & Harris, R. A. (2005). Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 8(11), 1465–1470.PubMedGoogle Scholar
  37. Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31(3), 349–352.PubMedGoogle Scholar
  38. Deneris, E. S., Boulter, J., Swanson, L. W., Patrick, J., & Heinemann, S. (1989). Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in the brain. Journal of Biological Chemistry, 264(11), 6268–6272.PubMedGoogle Scholar
  39. Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393, 295–314.PubMedGoogle Scholar
  40. Di Chiara, G., Bassareo, V., Fenu, S., De Luca, M. A., Spina, L., Cadoni, C., Acquas, E., Carboni, E., Valentini, V., & Lecca, D. (2004). Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 47, 227–241.PubMedGoogle Scholar
  41. Dwoskin, L. P., Sumithran, S. P., Zhu, J., Deaciuc, A. G., Ayers, J. T., & Crooks, P. A. (2004). Subtype-selective nicotinic receptor antagonists: potential as tobacco use cessation agents. Bioorganic & Medicinal Chemistry Letters, 14, 1863–1867.Google Scholar
  42. Dwoskin, L. P., Teng, L. H., Buxton, S. T., Ravard, A., Deo, N., & Crooks, P. A. (1995). Minor alkaloids of tobacco release [3H]dopamine release from superfused rat striatal slices. European. Journal of. Pharmacology, 276,195–199.PubMedGoogle Scholar
  43. Donny, E. C., Chaudhri, N., Caggiula, A. R., Evans-Martin, F. F., Booth, S., Gharib, M. A., et al. (2003). Operant responding for a visual reinforcer in rats in enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl), 169(1), 68–76.Google Scholar
  44. Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B., & Kellar, K. J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Molecular Pharmacology, 41(1), 31–37.PubMedGoogle Scholar
  45. Forsayeth, J. R., & Kobrin, E. (1997). Formation of oligomers containing the beta 3 and beta 4 subunits of the rat nicotinic receptor. Journal of Neuroscience, 17(5), 1531–1538.PubMedGoogle Scholar
  46. Fu, Y., Matta, S. G., Gao, W., & Sharp, B. M. (2000). Local alpha-bungarotoxin-sensitive nicotinic receptors in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience, 101(2), 369–375.PubMedGoogle Scholar
  47. Ghosheh, O., Dwoskin, L. P., Li, W. K., & Crooks, P. A. (1999). Residence time and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2'-14C]nicotine. Drug Metabolism and Disposition, 27, 1448–1455.PubMedGoogle Scholar
  48. Ghosheh O. A., Dwoskin L. P., Miller D. K. and Crooks P. A. (2001). Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2'-14C]-nicotine. Drug Metabolism and Disposition, 29, 645–651.PubMedGoogle Scholar
  49. George, T. P., & O’Malley, S. S. (2004). Current pharmacological treatments for nicotine dependence. Trends in Pharmacological Sciences, 25(1), 42–48.PubMedGoogle Scholar
  50. Goldner, F. M., Dineley, K. T., & Patrick, J. W. (1997). Immunohistochemical localization of the nicotinic acetylcholine receptor subunit alpha 6 to dopaminergic neurons in the substantia nigra and ventral tegmental area. Neuroreport, 8(12), 2739–2742.PubMedGoogle Scholar
  51. Gotti, C., Moretti, M., Clementi, F., Riganti, F., McIntosh, J. M., Collins, A. C., et al. (2005). Expression of nigrostriatal α6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by β3 subunit gene deletion. Molecular Pharmacology, 67, 2007–2015.PubMedGoogle Scholar
  52. Gotti, C., Zoli, M., & Clementi, F. (2006). Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacological Sciences, 27(9), 482–491.PubMedGoogle Scholar
  53. Grady, S. R., Grun, E. U., Marks, M. J., & Collins, A. C. (1997). Pharmacological comparisons of transient and persistent [3H]dopamine release from mouse striatal synaptosomes and response to chronic L-nicotine treatment. The Journal of Pharmacology and Experimental Therapeutics, 282, 32–43.PubMedGoogle Scholar
  54. Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Changeux, J-P., et al. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 76, 258–226.PubMedGoogle Scholar
  55. Grady, S. R., Murphy, K. L., Cao, J., Marks, M. J., McIntosh, J. M., & Collins, A. C. (2002). Characterization of nicotinic agonist-induced [(3)H]dopamine release from synaptosomes prepared from four mouse brain regions. Journal of Pharmacology and Experimental Therapeutics, 301(2), 651–660.PubMedGoogle Scholar
  56. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713–716.PubMedGoogle Scholar
  57. Grinevich, V. P., Crooks, P. A., Sumithran, S. P., Haubner, A. J., Ayers, J. T., & Dwoskin, L. P. (2003). N-n-Alkylpyridinium analogs, a novel class of nicotinic receptor antagonists: selective inhibition of nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. The Journal of Pharmacology and Experimental Therapeutics, 306(3), 1011–1020.PubMedGoogle Scholar
  58. Grottick, A. J., Trube, G., Corrigall, W. A., Huwyler, J., Malherbe, P., Wyler, R., et al. (2000). Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. The Journal of Pharmacology and Experimental Therapeutics, 294(3), 1112–1119.PubMedGoogle Scholar
  59. Hurt, R. D., Krook, J. E., Croghan, I. T., Loprinzi, C. L., Sloan, J. A., Novotny, P. J., et al. (2003). Nicotine patch therapy based on smoking rat followed by bupropion for prevention of relapse to smoking. Journal of Clinical Oncology, 21(5), 914–920.PubMedGoogle Scholar
  60. Imperato, A., Mulas, A., & Dichiara, G. (1986). Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology, 132 (2–3), 337–338.PubMedGoogle Scholar
  61. Irvin, J. E., Hendricks, P. S., & Brandon, T. H. (2003). The increasing recalcitrance of smokers in clinical trials II: Pharmacotherapy trials. Nicotine & Tobacco Research, 5(1), 27–35.Google Scholar
  62. Jones, I. W., Bolam, J. P., & Wonnacott, S. (2001). Presynaptic localization of the nicotinic acetylcholine receptor beta 2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurons. The Journal of Comparative Neurology, 439(2), 235–247.PubMedGoogle Scholar
  63. Kaiser, S. A., Soliakov, L., Harvey, S. C., Luetje, C. W., & Wonnacott, S. (1998). Differential inhibition by α-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. Journal of Neurochemistry, 70, 1069–1076.PubMedGoogle Scholar
  64. Kenny, P. J., & Markou, A. (2006). Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology, 31, 1203–1211.PubMedGoogle Scholar
  65. Klink, R., de Kerchove d’Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. Journal of Neuroscience, 21(5), 1452–1463.PubMedGoogle Scholar
  66. Koob, G. F. (1992). Neural mechanisms of drug reinforcement. Annals of New York Academy of Sciences, 654, 171–191.Google Scholar
  67. Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. Annals of New York Academy of Sciences, 877, 445–46.Google Scholar
  68. Kulak, J. M., McIntosh, J. M., Yoshikami, D., & Olivera, B. M. (2001). Nicotine-evoked transmitter release from synaptosomes: functional association of specific presynaptic acetylcholine receptors and voltage-gated calcium channels. Journal of Neurochemistry, 77, 1581–1589.PubMedGoogle Scholar
  69. Kulak, J. M., Nguyen, T. A., Olivera, B. M., & McIntosh, J. M. (1997). Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. Journal of Neuroscience, 17(14), 5263–5270.PubMedGoogle Scholar
  70. Kuryatov, A., Olale, F., Cooper, J., Choi, C., & Lindstrom, J. (2000). Human alpha6 AChR subtypes: subunit composition, assembly and pharmacological responses. Neuropharmacology, 38(13), 2570–2590.Google Scholar
  71. Le Novere, N., Zoli, M., & Changeux, J. P. (1996). Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. European Journal of Neuroscience, 8(11), 2428–2439.PubMedGoogle Scholar
  72. Liu, X., Caggiula, A. R., Yee, S. K., Nobuta, H., Sved, A. F., Pechnick, R. N., et al. (2007). Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology, 32(3), 710–718.PubMedGoogle Scholar
  73. Lopez-Hernandez, G. Y., Sanchez-Padilla, J., Ortiz-Acevedo, A., Lizardi-Ortiz, J., Salas-Vincenty, J., Rojas, L. V., et al. (2004). Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio. Journal of Biological Chemistry, 279(36), 38007–38015.PubMedGoogle Scholar
  74. Lundahl, L. H., Henningfield, J. E., & Lukas, S. E. (2000). Mecamylamine blockade of both positive and negative effects of IV nicotine in human volunteers. Pharmacology, Biochemistry, and Behavior, 66(3), 637–643.PubMedGoogle Scholar
  75. Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.PubMedGoogle Scholar
  76. Mansvelder, H. D., & McGehee, D. S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27(2), 349–357.PubMedGoogle Scholar
  77. Mansvelder, H. D., & McGehee, D. S. (2002). Cellular and synaptic mechanisms of nicotine addiction. Journal of Neurobiology, 53(4), 606–617.PubMedGoogle Scholar
  78. Markou, A., & Paterson, N. E. (2001). The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine and Tobacco Research, 3(4), 361–373.PubMedGoogle Scholar
  79. Martin-Soelch, C., Leenders, K. L., Chevalley, A. F., Missimer, J., Kunig, G., Magyar, S., et al. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Review, 26(2–3), 139–149.Google Scholar
  80. McCallum, S. E., Parameswaran, N., Bordia, T., McIntosh, J. M., Grady, S. R., & Quik, M. (2005). Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Molecular Pharmacology, 68(3), 737–746.PubMedGoogle Scholar
  81. McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1681–1682.Google Scholar
  82. McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology, 57, 521–546.PubMedGoogle Scholar
  83. McIntosh, J. M., Olivera, B. M., & Cruz, L. J. (1999). Conus peptides as probes for ion channels. Methods in Enzymology, 294, 605–624.PubMedGoogle Scholar
  84. McIntosh, J. M., Santos, A. D., & Olivera, B. M. (1999). Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annual Review of Biochemistry, 68, 59–88.PubMedGoogle Scholar
  85. Mihalak, K. B., Carroll, F. I., & Luetje, C. W. (2006). Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Molecular Pharmacology, 70(3), 801–805.PubMedGoogle Scholar
  86. Miller, D. K., Sumithran, S. P., & Dwoskin, L. P. (2002). Bupropion inhibits nicotine-evoked [3H]overflow from rat striatal slices preloaded with [3H]dopamine and from rat hippocampal slices preloaded with [3H]norepinephrine. The Journal of Pharmacology and Experimental Therapeutics, 203(3), 1113–1122.Google Scholar
  87. Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y., & Lindstrom, J. (2003). Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Molecular Pharmacology, 63(2), 332–341.PubMedGoogle Scholar
  88. Neugebauer, N. M., Zhang, Z., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2006). Effect of a novel nicotinic receptor antagonist, N,N’dodecane-1,12-diyl-bis-3-picolinium dibromide, on nicotine self-administration and hyperactivity in rats. Psychopharmacology (Berl), 184(3–4), 426–434.Google Scholar
  89. Niaura, R., Shadel, W. G., Abrams, D. B., Monti, P. M., Rohsenow, D. J., & Sirota, A. (1998). Individual differences in cue reactivity among smokers trying to quit: effects of gender and cue type. Addictive Behaviors, 23(2), 209–224.PubMedGoogle Scholar
  90. Nicke, A., Wonnacott, S., & Lewis, R. J. (2004). Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. European Journal of Biochemistry, 271(12), 2305–2319.PubMedGoogle Scholar
  91. Nisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse, 16(1), 36–44.PubMedGoogle Scholar
  92. Nomikos ,G. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1989). Acute effects of bupropion on extracellular dopamine concentrations in rat striatum and nucleus accumbens studied by in vivo microdialysis. Neuropsychopharmacology, 2(4), 273–279.PubMedGoogle Scholar
  93. Nomikos, G. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1992). Effects of chronic bupropion on interstitial concentrations of dopamine in rat nucleus accumbens and striatum. Neuropsychopharmacology, 7(1), 7–14.PubMedGoogle Scholar
  94. Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., et al., (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184, 391–400.PubMedGoogle Scholar
  95. Palmatier, M. I., Liu, X., Caggiula, A. R., Donny, E. C., & Sved, A. F. (2007). The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine. Neuropsychopharmacology, 32, 1098–1108.PubMedGoogle Scholar
  96. Papke, R. L., Dwoskin, L. P., & Crooks, P. A. (2007). The pharmacological fingerprint of nAChRs subtypes utilizing nicotine and nornicotine: relevance to nicotine dependence and drug discovery. Journal of Neurochemistry, 101(1), 160–167.PubMedGoogle Scholar
  97. Perkins, K. A., Epstein, L. H., Grobe, J., & Fonte, C. (1994). Tobacco abstinence, smoking cues, and the reinforcing value of smoking. Pharmacology, Biochemistry, and Behavior, 47(1), 107–112.PubMedGoogle Scholar
  98. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.PubMedGoogle Scholar
  99. Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.PubMedGoogle Scholar
  100. Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning and Memory, 11(1), 60–69.PubMedGoogle Scholar
  101. Pivavarchyk, M., Zhang, Z., Crooks, P. A., & Dwoskin, L. P. (2007). Tetrakis quaternary ammonium salts: novel nicotinic receptor antagonists which inhibit nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. Society for Neuroscience Abstract, 37, 78.12.Google Scholar
  102. Pomerleau, C. S., & Pomerleau, O. F. (1992). Euphoriant effects of nicotine in smokers. Pychopharmacology (Berl), 108, 460–465.Google Scholar
  103. Pontieri, F. E., Tanda, G., Orzi, F., & Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382(6588), 255–257.PubMedGoogle Scholar
  104. Poth, K., Nutter, T. J., Cuevas, J., Parker, M. J., Adams, D. J., & Luetje, C. W. (1997). Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. Journal of Neuroscience, 17(2), 586–596.PubMedGoogle Scholar
  105. Quarta, D., Ciruela, F., Patkar, K., Borycz, J., Solinas, M., Lluis, C., et al. (2007). Heteromeric nicotinic acetylcholine-dopamine autoreceptor complexes modulate striatal dopamine release. Neuropsychopharmacology, 32(1), 35–42.PubMedGoogle Scholar
  106. Rahman, S., Neugebauer, N. M., Zhang, Z., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2007). The effects of a novel nicotinic receptor antagonist N,N’-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology, 52(3), 755–763.PubMedGoogle Scholar
  107. Rahman, S., Zhang, J., & Corrigall, W. A. (2004). Effects of nicotine preexposure on sulpiride-induced dopamine release in the nucleus accumbens. European Journal of Pharmacology, 494(1), 31–34.PubMedGoogle Scholar
  108. Rahman, S., Zhang, Z., Papke, R. L., Crooks, P. A., Dwoskin, L. P., & Bardo, M. T. (2008). Region-specific effects of N,N’dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on nicotine-induced increase in extracellular dopamine in vivo. British Journal of Pharmacology, 153, 792–804.Google Scholar
  109. Rauhut, A. S., Neugebauer, N., Dwoskin, L. P., & Bardo, M. T. (2003). Effect of bupropion on nicotine self-administration in rats. Psychopharmacology (Berl), 169, 1–9.Google Scholar
  110. Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience, 7(6), 583–584.PubMedGoogle Scholar
  111. Rose, J. E., & Behm, F. M. (2004). Extinguishing the rewarding value of smoke cues: pharmacological and behavioral treatments. Nicotine & Tobacco Research, 6(3), 523–532.Google Scholar
  112. Rose, J. E., Behm, F. M., Westman, E. C., Levin, E. D., Stein, R. M., & Ripka, G. V. (1994). Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clinical Pharmacology and Therapeutics, 56(1), 86–99.PubMedGoogle Scholar
  113. Rose, J. E., Westman, E. C., Behm, F. M., Johnson, M. P., & Goldberg, J. S. (1999). Blockade of smoking satisfaction using the peripheral nicotinic antagonist trimethaphan. Pharmacology, Biochemistry, and Behavior, 62(1), 165–172.PubMedGoogle Scholar
  114. Salminen, O., Drapeau, J. A., McIntosh, J. M., Collins, A. C., Marks, M. J., & Grady, S. R. (2007). Pharmacology of α-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Molecular Pharmacology, 71, 1563–1571.Google Scholar
  115. Salminen, O., Murphy, K. L., McIntosh, J. M., Drago, J., Marks, M. J., Collins, A. C., et al. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65, 1526–1535.PubMedGoogle Scholar
  116. Scholze, P., Orr-Urtreger, A., Changeux, J. P., McIntosh, J. M., & Huck, S. (2007). Catecholamine outflow from mouse and rat brain slice preparations evoked by nicotinic acetylcholine receptor activation and electrical field stimulation. British Journal of Pharmacology, 151(3), 414–422.PubMedGoogle Scholar
  117. Shima, K., & Tanji, J. (1998). Role for cingulated motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.PubMedGoogle Scholar
  118. Singer, G., Wallace, M., & Hall, R. (1982). Effects of dopaminergic nucleus accumbens lesions on the acquisition of schedule induced self injection of nicotine in the rat. Pharmacology, Biochemistry, and Behavior, 17(3), 579–581.PubMedGoogle Scholar
  119. Slemmer, J. E., Martin, B. R., & Damaj, M. I. (2000). Bupropion is a nicotinic antagonist. The Journal of Pharmacology and Experimental Therapeutics, 295(1), 321–327.PubMedGoogle Scholar
  120. Soliakov, L., & Wonnacott, S. (1996). Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. Journal of Neurochemistry, 67, 163–170.PubMedGoogle Scholar
  121. Spanagel, R., & Weiss, F. (1999). The dopamine hypothesis of reward: past and current status. Trends in Neuroscience, 22(11), 521–527.Google Scholar
  122. Stokes, C., Dwoskin, L. P., Crooks, P. A., Jacobs, L. B., McIntosh, J. M., & Papke, R. L. (2007). The identification of selective competitive and noncompetitive nAChR antagonists using alpha6 nicotinic acetylcholine receptor chimeras. Society for Neuroscience Abstract, 37, 574.4.Google Scholar
  123. Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology, 117(1), 2–10.PubMedGoogle Scholar
  124. Sumithran, S. P., Crooks, P. A., Xu, R., Zhu, J., Deaciuc, A. G., Wilkins, L. H., et al. (2005). Introduction of unsaturation into the N-n-alkyl chain of the nicotinic receptor antagonists, NONI and NDNI: effect on affinity and selectivity. American Association of Pharmaceutical Scientists Journal, 7(1), E201–217.PubMedGoogle Scholar
  125. Tapper, A. R., McKinney, S. L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., et al. (2004). Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science, 306(5698), 983–985.Google Scholar
  126. Teng, L., Crooks, P. A., Buxton, S. T., & Dwoskin, L. P. (1997). Nicotinic-receptor mediation of S(-)nornicotine-evoked [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. The Journal of Pharmacology and Experimental Therapeutics, 280(3), 1432–1444.PubMedGoogle Scholar
  127. Vann, R. E., Rosecrans, J. A., James, J. R., Philibin, S. D., & Robinson, S. E. (2006). Neurochemical and behavioral effects of bupropion and mecamylamine in the presence of nicotine. Brain Research, 1117, 18–24.PubMedGoogle Scholar
  128. Wada, E., McKinnon, D., Heinemann, S., Patrick, J., & Swanson, L. W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor family (alpha 5) in the rat central nervous system. Brain Research, 526(1), 45–53.PubMedGoogle Scholar
  129. Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. The Journal Comparative Neurology, 284(2), 314–335.Google Scholar
  130. Walters, C. L., Brown, S., Changeux, J. P., Martin, B., & Damaj, M. I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology, 184(3–4), 339–344.PubMedGoogle Scholar
  131. Wei, X., Sumithran, S. P., Deaciuc, A. G., Burton, H. R., Bush, L. P., Dwoskin, L. P., et al. (2005). Identification and synthesis of novel alkaloids from the root system of Nicotiana tabacum: Affinity for neuronal nicotinic acetylcholine receptors. Life Sciences, 78, 495–505.PubMedGoogle Scholar
  132. Whiteaker, P., Marks, M. J., Grady, S. R., Lu, Y., Picciotto, M. R., Changeux, J. P., et al. (2000). Pharmacological and null mutation approaches reveal nicotinic receptor diversity. European Journal of Pharmacology, 393(1–3), 123–135.PubMedGoogle Scholar
  133. Wilkins, L. H., JR., Grinevich, V. P., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2003). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonists: interaction with α4β2* and α7* neuronal nicotinic receptors. The Journal of Pharmacology and Experimental Therapeutics, 304(1), 400–410.PubMedGoogle Scholar
  134. Wilkins, L. H., Haubner, A., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2002). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonist: inhibition of S(-)-nicotine-evoked [3H]dopamine overflow from superfused rat striatal slices. The Journal of Pharmacology and Experimental Therapeutics, 301(3), 1088–1096.PubMedGoogle Scholar
  135. Wilkins, L. H., Miller, D. K., Ayers, J. T., Crooks, P. A., & Dwoskin, L. P. (2006). N-n-Alkylnicotinium analogs, a novel class of antagonists at alpha 4 beta 2* nicotinic receptors: inhibition of S(-)-nicotine-evoked 86Rb+ efflux from rat thalamic synaptosomes. American Association of Pharmaceutical Scientists Journal, 7(4), E922–930.PubMedGoogle Scholar
  136. Wise, R. A. (1996). Neurobiology of addiction. Current Opinion in Neurobiology, 6(2), 243–251.PubMedGoogle Scholar
  137. Wise, R. A. (2000). Addiction becomes a brain disease. Neuron, 26, 27–33.PubMedGoogle Scholar
  138. Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94(4), 469–492.PubMedGoogle Scholar
  139. Wonnacott, S. (1997). Presynaptic nicotinic Ach receptors. Trends in Neuroscience, 20(2), 92–98.Google Scholar
  140. Wonnacott, S., Kaiser, S., Mogg, A., Soliakov, L., & Jones, I. W. (2000). Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology, 393(1–3), 51–58.PubMedGoogle Scholar
  141. Wonnacott, S., Sidhpura, N., & Balfour, D. J. (2005). Nicotine: from molecular mechanisms to behaviour. Current Opinion in Pharmacology, 5(1), 53–59.PubMedGoogle Scholar
  142. Wooltorton, J. R.A., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. Journal of Neuroscience, 23(8), 3176–3185.PubMedGoogle Scholar
  143. Zheng, F., Bayram, E., Sumithran, S. P., Ayers, J. T., Zhan, C. G., Schmitt, J. D., et al. (2006). QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorganic & Medicinal Chemistry, 14(9), 3017–3037.Google Scholar
  144. Zhang, Z., Lockman, P. R., Geldenhuys, W. J., Allen, D. D., Dwoskin, L. P., & Crooks, P. A. (2005). Synthesis of bis-pyridinium analogs and structurally related cyclophanes with high affinity for the blood brain barrier choline transporter. American Association Pharmaceutical Scientists, PharmSci (Supplement), 7(S2), Abstract W4079.Google Scholar
  145. Zhou, F. M., Liang, Y., & Dani, J. A. (2001). Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4(12), 1224–1229.PubMedGoogle Scholar
  146. Zoli, M., Moretti, M., Zanardi, A., McIntosh, J. M., Clementi, F., & Gotti, C. (2002). Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. Journal of Neuroscience, 22(20), 8785–8789.PubMedGoogle Scholar
  147. Zwart, R., & Vijverberg, H. P. (1998). Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Molecular Pharmacology, 54(6), 1124–1131.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Linda P. Dwoskin
    • 1
  • Marharyta Pivavarchyk
  • B. Matthew Joyce
  • Nichole M. Neugebauer
  • Guangrong Zheng
  • Zhenfa Zhang
  • Michael T. Bardo
  • Peter A. Crooks
  1. 1.Department of Pharmaceutical SciencesCollege of Pharmacy, University of KentuckyLexington

Personalised recommendations