Molecular Mechanisms Underlying the Motivational Effects of Nicotine

  • Darlene H. Brunzell
  • Marina R. PicciottoEmail author
Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)


Cues and Nicotine Dependence

Nicotine reinforcement is important for the initiation of smoking behavior. In addition, incentive motivation, or the ability of environmental cues to drive behavior, may play a predominant role in maintenance of tobacco use and relapse to smoking (Robinson & Berridge, 1993). It is interesting that sensory cues provided by tobacco smoke result in increased pleasure in smokers smoking denicotinized cigarettes (Perkins et al., 2001; Rose & Behm, 2004) and the success of behavioral therapies that devalue cigarettes is dependent on providing the flavor that matches smokers’ regular brands (Rose & Behm, 2004). Smoking-associated cues that induce craving activate brain areas associated with liking nicotine (Brody et al., 2002; Due, Huettel, Hall, & Rubin, 2002; Franklin et al., 2007). Together these studies suggest that smoking-associated cues can gain control over the areas of the brain that stimulate reward derived from nicotine, and such cues can...


Ventral Tegmental Area Conditioned Place Preference Nicotine Exposure Nicotine Administration Conditioned Reinforcement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants DA00436, DA10455, DA14241 and AA15632 from the National Institutes of Health and by NARSAD.


  1. Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105(4), 849–856.PubMedGoogle Scholar
  2. Bespalov, A. Y., Dravolina, O. A., Sukhanov, I., Zakharova, E., Blokhina, E., Zvartau, et al. (2005). Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology, 49 Suppl, 167–178.Google Scholar
  3. Bevins, R. A., Besheer, J., & Pickett, K. S. (2001). Nicotine-conditioned locomotor activity in rats: Dopaminergic and GABAergic influences on conditioned expression. Pharmacology, Biochemistry, and Behavior, 68(1), 135–145.PubMedGoogle Scholar
  4. Bierut, L. J., Madden, P. A., Breslau, N., Johnson, E. O., Hatsukami, D., Pomerleau, O. F., et al. (2007). Novel genes identified in a high-density genome wide association study for nicotine dependence. Human Molecular Genetics, 16(1), 24–35.PubMedGoogle Scholar
  5. Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59(12), 1162–1172.PubMedGoogle Scholar
  6. Brody, A. L., Mandelkern, M. A., London, E. D., Olmstead, R. E., Farahi, J., Scheibal, D., et al. (2006). Cigarette smoking saturates brain alpha4 beta2 nicotinic acetylcholine receptors. Archives General Psychiatry, 63(8), 907–915.Google Scholar
  7. Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., et al. (2004). Smoking-induced ventral striatum dopamine release. The American Journal of Psychiatry, 161(7), 1211–1218.PubMedGoogle Scholar
  8. Brunzell, D. H., Chang, J. R., Schneider, B., Olausson, P., Taylor, J. R., & Picciotto, M. R. (2006). Beta2-subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology (Berl), 184(3–4), 328–338.Google Scholar
  9. Brunzell, D. H., & Picciotto, M. R. (2004). Non-biased nicotine conditioned place preference requires the beta2-subunit containing nicotinic acetylcholine receptors: Regulation of CREB as a potential mechanism for nicotine reinforcement. Paper presented at the Society for Neuroscience, 34th Annual Meeting, San Diego, California.Google Scholar
  10. Brunzell, D. H., Russell, D. S., & Picciotto, M. R. (2003). In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57BL/6 J mice. Journal Neurochemistry, 84(6), 1431–1441.Google Scholar
  11. Cador, M., Taylor, J. R., & Robbins, T. W. (1991). Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens. Psychopharmacology (Berl), 104(3), 377–385.Google Scholar
  12. Caggiula, A. R., Donny, E. C., Chaudhri, N., Perkins, K. A., Evans-Martin, F. F., & Sved, A. F. (2002a). Importance of nonpharmacological factors in nicotine self-administration. Physiology & Behavior, 77(4–5), 683–687.Google Scholar
  13. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2001). Cue dependency of nicotine self-administration and smoking. Pharmacology, Biochemistry, and Behavior, 70(4), 515–530.PubMedGoogle Scholar
  14. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2002b). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology (Berl), 163(2), 230–237.Google Scholar
  15. Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., et al. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. The Journal of Neuroscience, 23(21), 7820–7829.PubMedGoogle Scholar
  16. Chang, K. T., & Berg, D. K. (2001). Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron, 32(5), 855–865.PubMedGoogle Scholar
  17. Changeux, J. P., Devillers-Thiery, A., & Chemouilli, P. (1984). Acetylcholine receptor: An allosteric protein. Science, 225(4668), 1335–1345.PubMedGoogle Scholar
  18. Cohen, C., Perrault, G., Griebel, G., & Soubrie, P. (2005). Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: Reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology, 30(1), 145–155.PubMedGoogle Scholar
  19. Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.PubMedGoogle Scholar
  20. Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl), 107(2–3), 285–289.Google Scholar
  21. Cui, C., Booker, T. K., Allen, R. S., Grady, S. R., Whiteaker, P., Marks, M. J., et al. (2003). The beta3 nicotinic receptor subunit: A component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. The Journal Neuroscience, 23(35), 11045–11053.Google Scholar
  22. Davis, J. A., & Gould, T. J. (2006). The effects of DhbE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl), 184, 345–352.Google Scholar
  23. Davis, J. A., & Gould, T. J. (2007). Beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl), 190(3), 343–352.Google Scholar
  24. Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Acadamey of Science of the United States of America, 85(14), 5274–5278.Google Scholar
  25. Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to alzheimer's disease. The Journal Neuroscience, 21(12), 4125–4133.Google Scholar
  26. Due, D. L., Huettel, S. A., Hall, W. G., & Rubin, D. C. (2002). Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 159(6), 954–960.PubMedGoogle Scholar
  27. Ferrari, R., Le Novere, N., Picciotto, M. R., Changeux, J. P., & Zoli, M. (2002). Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections. European Jpurnal of Neuroscience, 15(11), 1810–1818.Google Scholar
  28. Franklin, T. R., Wang, Z., Wang, J., Sciortino, N., Harper, D., Li, Y., Ehrman, R., et al. (2007). Limbic activation to cigarette smoking cues independent of nicotine withdrawal: A perfusion fMRI study. Neuropsychopharmacology, 32(11), 2301–2309.Google Scholar
  29. Gaddnas, H., Pietila, K., & Ahtee, L. (2000). Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behavioural Brain Research, 113(1–2), 65–72.PubMedGoogle Scholar
  30. Gozzi, A., Schwarz, A., Reese, T., Bertani, S., Crestan, V., & Bifone, A. (2005). Region-specific effects of nicotine on brain activity: A pharmacological MRI study in the drug-naive rat. Neuropsychopharmacology, 31(8), 1690–1703.Google Scholar
  31. Grady, S., Marks, M. J., Wonnacott, S., & Collins, A. C. (1992). Characterization of nicotinic receptor-mediated [3 H]dopamine release from synaptosomes prepared from mouse striatum. The Journal Neurochemistry, 59(3), 848–856.Google Scholar
  32. Grady, S. R., Marks, M. J., & Collins, A. C. (1994). Desensitization of nicotine-stimulated [3 h]dopamine release from mouse striatal synaptosomes. The Journal Neurochemistry, 62(4), 1390–1398.Google Scholar
  33. Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Changeux, J. P., et al. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nachr than dopamine release from striatum. The Journal Neurochemistry, 76(1), 258–268.Google Scholar
  34. Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science, 294(5544), 1024–1030.PubMedGoogle Scholar
  35. Grenhoff, J., Aston-Jones, G., & Svensson, T. H. (1986). Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiologica Scandinavica, 128(3), 351–358.PubMedGoogle Scholar
  36. Grottick, A. J., Trube, G., Corrigall, W. A., Huwyler, J., Malherbe, P., Wyler, R., et al. (2000). Evidence that nicotinic alpha7 receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. The Journal of Pharmacology and Experimental Therapeutics, 294(3), 1112–1119.PubMedGoogle Scholar
  37. Hope, B. T., Nagarkar, D., Leonard, S., & Wise, R. A. (2007). Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. The Journal of Neuroscience, 27(8), 1964–1972.PubMedGoogle Scholar
  38. Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl), 146(4), 373–390.Google Scholar
  39. Kelley, A. E. (2004). Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron, 44(1), 161–179.PubMedGoogle Scholar
  40. Kelley, A. E. (2006). Worms clear the smoke surrounding nicotine addiction. Cell, 127(3), 460–462.PubMedGoogle Scholar
  41. King, S. L., Caldarone, B. J., & Picciotto, M. R. (2004). Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology, 47(Suppl 1), 132–139.PubMedGoogle Scholar
  42. Klink, R., de Kerchove d'Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. The Journal of Neuroscience, 21(5), 1452–1463.PubMedGoogle Scholar
  43. Kulak, J. M., Sum, J., Musachio, J. L., McIntosh, J. M., & Quik, M. (2002). 5-iodo-A-85380 binds to alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors (nAChRs) as well as alpha4beta2* subtypes. The Journal of Neurochemistry, 81(2), 403–406.Google Scholar
  44. Lai, A., Parameswaran, N., Khwaja, M., Whiteaker, P., Lindstrom, J. M., Fan, H., et al. (2005). Long-term nicotine treatment decreases striatal alpha6* nicotinic acetylcholine receptor sites and function in mice. Molecular Pharmacology, 67(5), 1639–1647.PubMedGoogle Scholar
  45. Laviolette, S. R., & van der Kooy, D. (2003). The motivational valence of nicotine in the rat ventral tegmental area is switched from rewarding to aversive following blockade of the alpha7-subunit-containing nicotinic acetylcholine receptor. Psychopharmacology (Berl), 166(3), 306–313.Google Scholar
  46. Le Foll, B., Diaz, J., & Sokoloff, P. (2003). Increased dopamine D3 receptor expression accompanying behavioral sensitization to nicotine in rats. Synapse, 47(3), 176–183.PubMedGoogle Scholar
  47. Le Foll, B., Schwartz, J. C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230.PubMedGoogle Scholar
  48. Le Foll, B., Sokoloff, P., Stark, H., & Goldberg, S. R. (2005). Dopamine D3 receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology, 30(4), 720–730.PubMedGoogle Scholar
  49. le Novere, N., Zoli, M., Lena, C., Ferrari, R., Picciotto, M. R., Merlo-Pich, E., et al. (1999). Involvement of alpha6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport, 10(12), 2497–2501.PubMedGoogle Scholar
  50. Lesage, M. G., Burroughs, D., Dufek, M., Keyler, D. E., & Pentel, P. R. (2004). Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacology, Biochemistry, and Behavior, 79(3), 507–513.PubMedGoogle Scholar
  51. Liu, X., Koren, A. O., Yee, S. K., Pechnick, R. N., Poland, R. E., & London, E. D. (2003). Self-administration of 5-iodo-A-85380, a beta2-selective nicotinic receptor ligand, by operantly trained rats. Neuroreport, 14(11), 1503–1505.PubMedGoogle Scholar
  52. Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.PubMedGoogle Scholar
  53. Markou, A., & Paterson, N. E. (2001). The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine & Tobacco Research, 3(4), 361–373.Google Scholar
  54. Marubio, L. M., Gardier, A. M., Durier, S., David, D., Klink, R., Arroyo-Jimenez, M. M., et al. (2003). Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. European Journal of Neuroscience, 17(7), 1329–1337.PubMedGoogle Scholar
  55. Maskos, U., Molles, B. E., Pons, S., Besson, M., Guiard, B. P., Guilloux, J. P., et al. (2005). Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature, 436(7047), 103–107.PubMedGoogle Scholar
  56. McCallum, S., Parameswaran, N., Bordia, T., Fan, H., McIntosh, M., & Quik, M. (2006). Differential regulation of mesolimbic alpha3*/alpha6beta2* and alpha4beta2* nAChR sites and function after long-term oral nicotine to monkeys. The Journal Pharmacology and Experimental Therapeutics, 318(1), 381–388.Google Scholar
  57. Middleton, L. S., Cass, W. A., & Dwoskin, L. P. (2004). Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. The Journal Pharmacology and Experimental Therapeutics, 308(1), 367–377.Google Scholar
  58. Mogg, A. J., Whiteaker, P., McIntosh, J. M., Marks, M., Collins, A. C., & Wonnacott, S. (2002). Methyllycaconitine is a potent antagonist of alpha-conotoxin MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. The Journal Pharmacology and Experimental Therapeutics, 302(1), 197–204.Google Scholar
  59. Mugnaini, M., Garzotti, M., Sartori, I., Pilla, M., Repeto, P., Heidbreder, C. A., et al. (2006). Selective down-regulation of [125I]-alpha-conotoxin mii binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience, 137(2), 565–572.PubMedGoogle Scholar
  60. Nakayama, H., Numakawa, T., Ikeuchi, T., & Hatanaka, H. (2001). Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. The Journal of Neurochemistry, 79(3), 489–498.Google Scholar
  61. Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531–534.PubMedGoogle Scholar
  62. Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28(7), 1264–1271.PubMedGoogle Scholar
  63. Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 171(2), 173–178.Google Scholar
  64. Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 173(1–2), 98–104.Google Scholar
  65. Palmatier, M. I., & Bevins, R. A. (2002). Examination of GABAergic and dopaminergic compounds in the acquisition of nicotine-conditioned hyperactivity in rats. Neuropsychobiology, 45(2), 87–94.PubMedGoogle Scholar
  66. Palmatier, M. I., Peterson, J. L., Wilkinson, J. L., & Bevins, R. A. (2004). Nicotine serves as a feature-positive modulator of pavlovian appetitive conditioning in rats. Behavioural Pharmacology, 15(3), 183–194.PubMedGoogle Scholar
  67. Pandey, S. C., Roy, A., Xu, T., & Mittal, N. (2001). Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. The Journal Neurochemistry, 77(3), 943–952.Google Scholar
  68. Parker, S. L., Fu, Y., McAllen, K., Luo, J., McIntosh, J. M., Lindstrom, J. M., et al. (2004). Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: Disproportionate increase of the alpha6 subunit. Molecular Pharmacology, 65(3), 611–622.PubMedGoogle Scholar
  69. Paterson, N. E., & Markou, A. (2005). The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology (Berl), 179(1), 255–261.Google Scholar
  70. Paterson, N. E., Semenova, S., Gasparini, F., & Markou, A. (2003). The mGlur5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl), 167(3), 257–264.Google Scholar
  71. Pauly, J. R., Marks, M. J., Gross, S. D., & Collins, A. C. (1991). An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. The Journal Pharmacology and Experimental Therapeutics, 258(3), 1127–1136.Google Scholar
  72. Perkins, K. A., Gerlach, D., Vender, J., Grobe, J., Meeker, J., & Hutchison, S. (2001). Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine & Tobacco Research, 3(2), 141–150.Google Scholar
  73. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.PubMedGoogle Scholar
  74. Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.PubMedGoogle Scholar
  75. Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning & Memory, 11(1), 60–69.Google Scholar
  76. Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience, 7(6), 583–584.PubMedGoogle Scholar
  77. Robbins, T. W., & Everitt, B. J. (2002). Limbic-striatal memory systems and drug addiction. Neurobiology of Learning and Memory, 78(3), 625–636.PubMedGoogle Scholar
  78. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291.PubMedGoogle Scholar
  79. Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–114.PubMedGoogle Scholar
  80. Rose, J. E., & Behm, F. M. (2004). Extinguishing the rewarding value of smoke cues: Pharmacological and behavioral treatments. Nicotine & Tobacco Research, 6(3), 523–532.Google Scholar
  81. Rowell, P. P., & Duggan, D. S. (1998). Long-lasting inactivation of nicotinic receptor function in vitro by treatment with high concentrations of nicotine. Neuropharmacology, 37(1), 103–111.PubMedGoogle Scholar
  82. Rowell, P. P., & Hillebrand, J. A. (1994). Characterization of nicotine-induced desensitization of evoked dopamine release from rat striatal synaptosomes. The Journal Neurochemistry, 63(2), 561–569.Google Scholar
  83. Russell, M. A. (1989). Subjective and behavioural effects of nicotine in humans: Some sources of individual variation. Progress in Brain Research, 79, 289–302.PubMedGoogle Scholar
  84. Salminen, O., Murphy, K. L., McIntosh, J. M., Drago, J., Marks, M. J., Collins, A. C., et al. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65(6), 1526–1535.PubMedGoogle Scholar
  85. Salminen, O., Whiteaker, P., Grady, S. R., Collins, A. C., McIntosh, J. M., & Marks, M. J. (2005). The subunit composition and pharmacology of alpha-conotoxin MII-binding nicotinic acetylcholine receptors studied by a novel membrane-binding assay. Neuropharmacology, 48(5), 696–705.PubMedGoogle Scholar
  86. Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increase arc mrna expression in corticolimbic areas of the rat brain. European Journal of Neuroscience, 21(6), 1703–1711.PubMedGoogle Scholar
  87. Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2007). Acute stress and nicotine cues interact to unveil locomotor arousal and activity-dependent gene expression in the prefrontal cortex. Biological Psychiatry, 61(1), 127–135.PubMedGoogle Scholar
  88. Schochet, T. L., Kelley, A. E., & Landry, C. F. (2005). Differential expression of arc mrna and other plasticity-related genes induced by nicotine in adolescent rat forebrain. Neuroscience, 135(1), 285–297.PubMedGoogle Scholar
  89. Schroeder, B. E., Binzak, J. M., & Kelley, A. E. (2001). A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience, 105(3), 535–545.PubMedGoogle Scholar
  90. Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.PubMedGoogle Scholar
  91. Shiffman, S., Paty, J. A., Gnys, M., Kassel, J. A., & Hickcox, M. (1996). First lapses to smoking: Within-subjects analysis of real-time reports. Journal of Consulting and Clinical Psychology, 64(2), 366–379.PubMedGoogle Scholar
  92. Shoaib, M., Stolerman, I. P., & Kumar, R. C. (1994). Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology (Berl), 113(3–4), 445–452.Google Scholar
  93. Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21, 127–148.PubMedGoogle Scholar
  94. Sorenson, E. M., Shiroyama, T., & Kitai, S. T. (1998). Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience, 87(3), 659–673.PubMedGoogle Scholar
  95. Sparks, J. A., & Pauly, J. R. (1999). Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57BL/6 mice. Psychopharmacology (Berl), 141(2), 145–153.Google Scholar
  96. Svensson, T. H., Grenhoff, J., & Engberg, G. (1990). Effect of nicotine on dynamic function of brain catecholamine neurons. Ciba Foundation Symposium, 152, 169–180; discussion 180–165.PubMedGoogle Scholar
  97. Sweatt, J. D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14(3), 311–317.PubMedGoogle Scholar
  98. Tapper, A. R., McKinney, S. L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., et al. (2004). Nicotine activation of alpha4* receptors: Sufficient for reward, tolerance, and sensitization. Science, 306(5698), 1029–1032.PubMedGoogle Scholar
  99. Taylor, J. R., & Robbins, T. W. (1984). Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl), 84(3), 405–412.Google Scholar
  100. Taylor, J. R., & Robbins, T. W. (1986). 6-hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology (Berl), 90(3), 390–397.Google Scholar
  101. Tiffany, S. T., & Drobes, D. J. (1990). Imagery and smoking urges: The manipulation of affective content. Addictivity Behaviors, 15(6), 531–539.Google Scholar
  102. Valjent, E., Pages, C., Herve, D., Girault, J. A., & Caboche, J. (2004). Addictive and non-addictive drugs induce distinct and specific patterns of erk activation in mouse brain. European Journal Neuroscience, 19(7), 1826–1836.Google Scholar
  103. Walters, C. L., Brown, S., Changeux, J. P., Martin, B., & Damaj, M. I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl), 184(3–4), 339–344.Google Scholar
  104. Walters, C. L., Cleck, J. N., Kuo, Y. C., & Blendy, J. A. (2005). Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron, 46(6), 933–943.PubMedGoogle Scholar
  105. Waters, A. J., Shiffman, S., Bradley, B. P., & Mogg, K. (2003). Attentional shifts to smoking cues in smokers. Addiction, 98(10), 1409–1417.PubMedGoogle Scholar
  106. Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. The Journal Neuroscience, 23(8), 3176–3185.Google Scholar
  107. Wu, J., George, A. A., Schroeder, K. M., Xu, L., Marxer-Miller, S., Lucero, L., et al. (2004). Electrophysiological, pharmacological, and molecular evidence for alpha7-nicotinic acetylcholine receptors in rat midbrain dopamine neurons. The Journal of Pharmacology and Experiemntal Therapeuics, 311(1), 80–91.Google Scholar
  108. Zhang, H., & Sulzer, D. (2004). Frequency-dependent modulation of dopamine release by nicotine. Nature Neuroscience, 7(6), 581–582.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations