Skip to main content

Molecular Mechanisms Underlying the Motivational Effects of Nicotine

  • Chapter
  • First Online:

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 55))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105(4), 849–856.

    PubMed  Google Scholar 

  • Bespalov, A. Y., Dravolina, O. A., Sukhanov, I., Zakharova, E., Blokhina, E., Zvartau, et al. (2005). Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology, 49 Suppl, 167–178.

    Google Scholar 

  • Bevins, R. A., Besheer, J., & Pickett, K. S. (2001). Nicotine-conditioned locomotor activity in rats: Dopaminergic and GABAergic influences on conditioned expression. Pharmacology, Biochemistry, and Behavior, 68(1), 135–145.

    PubMed  Google Scholar 

  • Bierut, L. J., Madden, P. A., Breslau, N., Johnson, E. O., Hatsukami, D., Pomerleau, O. F., et al. (2007). Novel genes identified in a high-density genome wide association study for nicotine dependence. Human Molecular Genetics, 16(1), 24–35.

    PubMed  Google Scholar 

  • Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59(12), 1162–1172.

    PubMed  Google Scholar 

  • Brody, A. L., Mandelkern, M. A., London, E. D., Olmstead, R. E., Farahi, J., Scheibal, D., et al. (2006). Cigarette smoking saturates brain alpha4 beta2 nicotinic acetylcholine receptors. Archives General Psychiatry, 63(8), 907–915.

    Google Scholar 

  • Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., et al. (2004). Smoking-induced ventral striatum dopamine release. The American Journal of Psychiatry, 161(7), 1211–1218.

    PubMed  Google Scholar 

  • Brunzell, D. H., Chang, J. R., Schneider, B., Olausson, P., Taylor, J. R., & Picciotto, M. R. (2006). Beta2-subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology (Berl), 184(3–4), 328–338.

    Google Scholar 

  • Brunzell, D. H., & Picciotto, M. R. (2004). Non-biased nicotine conditioned place preference requires the beta2-subunit containing nicotinic acetylcholine receptors: Regulation of CREB as a potential mechanism for nicotine reinforcement. Paper presented at the Society for Neuroscience, 34th Annual Meeting, San Diego, California.

    Google Scholar 

  • Brunzell, D. H., Russell, D. S., & Picciotto, M. R. (2003). In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57BL/6 J mice. Journal Neurochemistry, 84(6), 1431–1441.

    Google Scholar 

  • Cador, M., Taylor, J. R., & Robbins, T. W. (1991). Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens. Psychopharmacology (Berl), 104(3), 377–385.

    Google Scholar 

  • Caggiula, A. R., Donny, E. C., Chaudhri, N., Perkins, K. A., Evans-Martin, F. F., & Sved, A. F. (2002a). Importance of nonpharmacological factors in nicotine self-administration. Physiology & Behavior, 77(4–5), 683–687.

    Google Scholar 

  • Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2001). Cue dependency of nicotine self-administration and smoking. Pharmacology, Biochemistry, and Behavior, 70(4), 515–530.

    PubMed  Google Scholar 

  • Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2002b). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology (Berl), 163(2), 230–237.

    Google Scholar 

  • Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., et al. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. The Journal of Neuroscience, 23(21), 7820–7829.

    PubMed  Google Scholar 

  • Chang, K. T., & Berg, D. K. (2001). Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron, 32(5), 855–865.

    PubMed  Google Scholar 

  • Changeux, J. P., Devillers-Thiery, A., & Chemouilli, P. (1984). Acetylcholine receptor: An allosteric protein. Science, 225(4668), 1335–1345.

    PubMed  Google Scholar 

  • Cohen, C., Perrault, G., Griebel, G., & Soubrie, P. (2005). Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: Reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology, 30(1), 145–155.

    PubMed  Google Scholar 

  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.

    PubMed  Google Scholar 

  • Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl), 107(2–3), 285–289.

    Google Scholar 

  • Cui, C., Booker, T. K., Allen, R. S., Grady, S. R., Whiteaker, P., Marks, M. J., et al. (2003). The beta3 nicotinic receptor subunit: A component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. The Journal Neuroscience, 23(35), 11045–11053.

    Google Scholar 

  • Davis, J. A., & Gould, T. J. (2006). The effects of DhbE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl), 184, 345–352.

    Google Scholar 

  • Davis, J. A., & Gould, T. J. (2007). Beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl), 190(3), 343–352.

    Google Scholar 

  • Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Acadamey of Science of the United States of America, 85(14), 5274–5278.

    Google Scholar 

  • Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to alzheimer's disease. The Journal Neuroscience, 21(12), 4125–4133.

    Google Scholar 

  • Due, D. L., Huettel, S. A., Hall, W. G., & Rubin, D. C. (2002). Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 159(6), 954–960.

    PubMed  Google Scholar 

  • Ferrari, R., Le Novere, N., Picciotto, M. R., Changeux, J. P., & Zoli, M. (2002). Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections. European Jpurnal of Neuroscience, 15(11), 1810–1818.

    Google Scholar 

  • Franklin, T. R., Wang, Z., Wang, J., Sciortino, N., Harper, D., Li, Y., Ehrman, R., et al. (2007). Limbic activation to cigarette smoking cues independent of nicotine withdrawal: A perfusion fMRI study. Neuropsychopharmacology, 32(11), 2301–2309.

    Google Scholar 

  • Gaddnas, H., Pietila, K., & Ahtee, L. (2000). Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behavioural Brain Research, 113(1–2), 65–72.

    PubMed  Google Scholar 

  • Gozzi, A., Schwarz, A., Reese, T., Bertani, S., Crestan, V., & Bifone, A. (2005). Region-specific effects of nicotine on brain activity: A pharmacological MRI study in the drug-naive rat. Neuropsychopharmacology, 31(8), 1690–1703.

    Google Scholar 

  • Grady, S., Marks, M. J., Wonnacott, S., & Collins, A. C. (1992). Characterization of nicotinic receptor-mediated [3 H]dopamine release from synaptosomes prepared from mouse striatum. The Journal Neurochemistry, 59(3), 848–856.

    Google Scholar 

  • Grady, S. R., Marks, M. J., & Collins, A. C. (1994). Desensitization of nicotine-stimulated [3 h]dopamine release from mouse striatal synaptosomes. The Journal Neurochemistry, 62(4), 1390–1398.

    Google Scholar 

  • Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Changeux, J. P., et al. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nachr than dopamine release from striatum. The Journal Neurochemistry, 76(1), 258–268.

    Google Scholar 

  • Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science, 294(5544), 1024–1030.

    PubMed  Google Scholar 

  • Grenhoff, J., Aston-Jones, G., & Svensson, T. H. (1986). Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiologica Scandinavica, 128(3), 351–358.

    PubMed  Google Scholar 

  • Grottick, A. J., Trube, G., Corrigall, W. A., Huwyler, J., Malherbe, P., Wyler, R., et al. (2000). Evidence that nicotinic alpha7 receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. The Journal of Pharmacology and Experimental Therapeutics, 294(3), 1112–1119.

    PubMed  Google Scholar 

  • Hope, B. T., Nagarkar, D., Leonard, S., & Wise, R. A. (2007). Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. The Journal of Neuroscience, 27(8), 1964–1972.

    PubMed  Google Scholar 

  • Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl), 146(4), 373–390.

    Google Scholar 

  • Kelley, A. E. (2004). Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron, 44(1), 161–179.

    PubMed  Google Scholar 

  • Kelley, A. E. (2006). Worms clear the smoke surrounding nicotine addiction. Cell, 127(3), 460–462.

    PubMed  Google Scholar 

  • King, S. L., Caldarone, B. J., & Picciotto, M. R. (2004). Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology, 47(Suppl 1), 132–139.

    PubMed  Google Scholar 

  • Klink, R., de Kerchove d'Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. The Journal of Neuroscience, 21(5), 1452–1463.

    PubMed  Google Scholar 

  • Kulak, J. M., Sum, J., Musachio, J. L., McIntosh, J. M., & Quik, M. (2002). 5-iodo-A-85380 binds to alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors (nAChRs) as well as alpha4beta2* subtypes. The Journal of Neurochemistry, 81(2), 403–406.

    Google Scholar 

  • Lai, A., Parameswaran, N., Khwaja, M., Whiteaker, P., Lindstrom, J. M., Fan, H., et al. (2005). Long-term nicotine treatment decreases striatal alpha6* nicotinic acetylcholine receptor sites and function in mice. Molecular Pharmacology, 67(5), 1639–1647.

    PubMed  Google Scholar 

  • Laviolette, S. R., & van der Kooy, D. (2003). The motivational valence of nicotine in the rat ventral tegmental area is switched from rewarding to aversive following blockade of the alpha7-subunit-containing nicotinic acetylcholine receptor. Psychopharmacology (Berl), 166(3), 306–313.

    Google Scholar 

  • Le Foll, B., Diaz, J., & Sokoloff, P. (2003). Increased dopamine D3 receptor expression accompanying behavioral sensitization to nicotine in rats. Synapse, 47(3), 176–183.

    PubMed  Google Scholar 

  • Le Foll, B., Schwartz, J. C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230.

    PubMed  Google Scholar 

  • Le Foll, B., Sokoloff, P., Stark, H., & Goldberg, S. R. (2005). Dopamine D3 receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology, 30(4), 720–730.

    PubMed  Google Scholar 

  • le Novere, N., Zoli, M., Lena, C., Ferrari, R., Picciotto, M. R., Merlo-Pich, E., et al. (1999). Involvement of alpha6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport, 10(12), 2497–2501.

    PubMed  Google Scholar 

  • Lesage, M. G., Burroughs, D., Dufek, M., Keyler, D. E., & Pentel, P. R. (2004). Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacology, Biochemistry, and Behavior, 79(3), 507–513.

    PubMed  Google Scholar 

  • Liu, X., Koren, A. O., Yee, S. K., Pechnick, R. N., Poland, R. E., & London, E. D. (2003). Self-administration of 5-iodo-A-85380, a beta2-selective nicotinic receptor ligand, by operantly trained rats. Neuroreport, 14(11), 1503–1505.

    PubMed  Google Scholar 

  • Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.

    PubMed  Google Scholar 

  • Markou, A., & Paterson, N. E. (2001). The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine & Tobacco Research, 3(4), 361–373.

    Google Scholar 

  • Marubio, L. M., Gardier, A. M., Durier, S., David, D., Klink, R., Arroyo-Jimenez, M. M., et al. (2003). Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. European Journal of Neuroscience, 17(7), 1329–1337.

    PubMed  Google Scholar 

  • Maskos, U., Molles, B. E., Pons, S., Besson, M., Guiard, B. P., Guilloux, J. P., et al. (2005). Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature, 436(7047), 103–107.

    PubMed  Google Scholar 

  • McCallum, S., Parameswaran, N., Bordia, T., Fan, H., McIntosh, M., & Quik, M. (2006). Differential regulation of mesolimbic alpha3*/alpha6beta2* and alpha4beta2* nAChR sites and function after long-term oral nicotine to monkeys. The Journal Pharmacology and Experimental Therapeutics, 318(1), 381–388.

    Google Scholar 

  • Middleton, L. S., Cass, W. A., & Dwoskin, L. P. (2004). Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. The Journal Pharmacology and Experimental Therapeutics, 308(1), 367–377.

    Google Scholar 

  • Mogg, A. J., Whiteaker, P., McIntosh, J. M., Marks, M., Collins, A. C., & Wonnacott, S. (2002). Methyllycaconitine is a potent antagonist of alpha-conotoxin MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. The Journal Pharmacology and Experimental Therapeutics, 302(1), 197–204.

    Google Scholar 

  • Mugnaini, M., Garzotti, M., Sartori, I., Pilla, M., Repeto, P., Heidbreder, C. A., et al. (2006). Selective down-regulation of [125I]-alpha-conotoxin mii binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience, 137(2), 565–572.

    PubMed  Google Scholar 

  • Nakayama, H., Numakawa, T., Ikeuchi, T., & Hatanaka, H. (2001). Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. The Journal of Neurochemistry, 79(3), 489–498.

    Google Scholar 

  • Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531–534.

    PubMed  Google Scholar 

  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28(7), 1264–1271.

    PubMed  Google Scholar 

  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 171(2), 173–178.

    Google Scholar 

  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 173(1–2), 98–104.

    Google Scholar 

  • Palmatier, M. I., & Bevins, R. A. (2002). Examination of GABAergic and dopaminergic compounds in the acquisition of nicotine-conditioned hyperactivity in rats. Neuropsychobiology, 45(2), 87–94.

    PubMed  Google Scholar 

  • Palmatier, M. I., Peterson, J. L., Wilkinson, J. L., & Bevins, R. A. (2004). Nicotine serves as a feature-positive modulator of pavlovian appetitive conditioning in rats. Behavioural Pharmacology, 15(3), 183–194.

    PubMed  Google Scholar 

  • Pandey, S. C., Roy, A., Xu, T., & Mittal, N. (2001). Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. The Journal Neurochemistry, 77(3), 943–952.

    Google Scholar 

  • Parker, S. L., Fu, Y., McAllen, K., Luo, J., McIntosh, J. M., Lindstrom, J. M., et al. (2004). Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: Disproportionate increase of the alpha6 subunit. Molecular Pharmacology, 65(3), 611–622.

    PubMed  Google Scholar 

  • Paterson, N. E., & Markou, A. (2005). The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology (Berl), 179(1), 255–261.

    Google Scholar 

  • Paterson, N. E., Semenova, S., Gasparini, F., & Markou, A. (2003). The mGlur5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl), 167(3), 257–264.

    Google Scholar 

  • Pauly, J. R., Marks, M. J., Gross, S. D., & Collins, A. C. (1991). An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. The Journal Pharmacology and Experimental Therapeutics, 258(3), 1127–1136.

    Google Scholar 

  • Perkins, K. A., Gerlach, D., Vender, J., Grobe, J., Meeker, J., & Hutchison, S. (2001). Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine & Tobacco Research, 3(2), 141–150.

    Google Scholar 

  • Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.

    PubMed  Google Scholar 

  • Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.

    PubMed  Google Scholar 

  • Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning & Memory, 11(1), 60–69.

    Google Scholar 

  • Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience, 7(6), 583–584.

    PubMed  Google Scholar 

  • Robbins, T. W., & Everitt, B. J. (2002). Limbic-striatal memory systems and drug addiction. Neurobiology of Learning and Memory, 78(3), 625–636.

    PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291.

    PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–114.

    PubMed  Google Scholar 

  • Rose, J. E., & Behm, F. M. (2004). Extinguishing the rewarding value of smoke cues: Pharmacological and behavioral treatments. Nicotine & Tobacco Research, 6(3), 523–532.

    Google Scholar 

  • Rowell, P. P., & Duggan, D. S. (1998). Long-lasting inactivation of nicotinic receptor function in vitro by treatment with high concentrations of nicotine. Neuropharmacology, 37(1), 103–111.

    PubMed  Google Scholar 

  • Rowell, P. P., & Hillebrand, J. A. (1994). Characterization of nicotine-induced desensitization of evoked dopamine release from rat striatal synaptosomes. The Journal Neurochemistry, 63(2), 561–569.

    Google Scholar 

  • Russell, M. A. (1989). Subjective and behavioural effects of nicotine in humans: Some sources of individual variation. Progress in Brain Research, 79, 289–302.

    PubMed  Google Scholar 

  • Salminen, O., Murphy, K. L., McIntosh, J. M., Drago, J., Marks, M. J., Collins, A. C., et al. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65(6), 1526–1535.

    PubMed  Google Scholar 

  • Salminen, O., Whiteaker, P., Grady, S. R., Collins, A. C., McIntosh, J. M., & Marks, M. J. (2005). The subunit composition and pharmacology of alpha-conotoxin MII-binding nicotinic acetylcholine receptors studied by a novel membrane-binding assay. Neuropharmacology, 48(5), 696–705.

    PubMed  Google Scholar 

  • Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increase arc mrna expression in corticolimbic areas of the rat brain. European Journal of Neuroscience, 21(6), 1703–1711.

    PubMed  Google Scholar 

  • Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2007). Acute stress and nicotine cues interact to unveil locomotor arousal and activity-dependent gene expression in the prefrontal cortex. Biological Psychiatry, 61(1), 127–135.

    PubMed  Google Scholar 

  • Schochet, T. L., Kelley, A. E., & Landry, C. F. (2005). Differential expression of arc mrna and other plasticity-related genes induced by nicotine in adolescent rat forebrain. Neuroscience, 135(1), 285–297.

    PubMed  Google Scholar 

  • Schroeder, B. E., Binzak, J. M., & Kelley, A. E. (2001). A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience, 105(3), 535–545.

    PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.

    PubMed  Google Scholar 

  • Shiffman, S., Paty, J. A., Gnys, M., Kassel, J. A., & Hickcox, M. (1996). First lapses to smoking: Within-subjects analysis of real-time reports. Journal of Consulting and Clinical Psychology, 64(2), 366–379.

    PubMed  Google Scholar 

  • Shoaib, M., Stolerman, I. P., & Kumar, R. C. (1994). Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology (Berl), 113(3–4), 445–452.

    Google Scholar 

  • Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21, 127–148.

    PubMed  Google Scholar 

  • Sorenson, E. M., Shiroyama, T., & Kitai, S. T. (1998). Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience, 87(3), 659–673.

    PubMed  Google Scholar 

  • Sparks, J. A., & Pauly, J. R. (1999). Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57BL/6 mice. Psychopharmacology (Berl), 141(2), 145–153.

    Google Scholar 

  • Svensson, T. H., Grenhoff, J., & Engberg, G. (1990). Effect of nicotine on dynamic function of brain catecholamine neurons. Ciba Foundation Symposium, 152, 169–180; discussion 180–165.

    PubMed  Google Scholar 

  • Sweatt, J. D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14(3), 311–317.

    PubMed  Google Scholar 

  • Tapper, A. R., McKinney, S. L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., et al. (2004). Nicotine activation of alpha4* receptors: Sufficient for reward, tolerance, and sensitization. Science, 306(5698), 1029–1032.

    PubMed  Google Scholar 

  • Taylor, J. R., & Robbins, T. W. (1984). Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl), 84(3), 405–412.

    Google Scholar 

  • Taylor, J. R., & Robbins, T. W. (1986). 6-hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology (Berl), 90(3), 390–397.

    Google Scholar 

  • Tiffany, S. T., & Drobes, D. J. (1990). Imagery and smoking urges: The manipulation of affective content. Addictivity Behaviors, 15(6), 531–539.

    Google Scholar 

  • Valjent, E., Pages, C., Herve, D., Girault, J. A., & Caboche, J. (2004). Addictive and non-addictive drugs induce distinct and specific patterns of erk activation in mouse brain. European Journal Neuroscience, 19(7), 1826–1836.

    Google Scholar 

  • Walters, C. L., Brown, S., Changeux, J. P., Martin, B., & Damaj, M. I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl), 184(3–4), 339–344.

    Google Scholar 

  • Walters, C. L., Cleck, J. N., Kuo, Y. C., & Blendy, J. A. (2005). Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron, 46(6), 933–943.

    PubMed  Google Scholar 

  • Waters, A. J., Shiffman, S., Bradley, B. P., & Mogg, K. (2003). Attentional shifts to smoking cues in smokers. Addiction, 98(10), 1409–1417.

    PubMed  Google Scholar 

  • Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. The Journal Neuroscience, 23(8), 3176–3185.

    Google Scholar 

  • Wu, J., George, A. A., Schroeder, K. M., Xu, L., Marxer-Miller, S., Lucero, L., et al. (2004). Electrophysiological, pharmacological, and molecular evidence for alpha7-nicotinic acetylcholine receptors in rat midbrain dopamine neurons. The Journal of Pharmacology and Experiemntal Therapeuics, 311(1), 80–91.

    Google Scholar 

  • Zhang, H., & Sulzer, D. (2004). Frequency-dependent modulation of dopamine release by nicotine. Nature Neuroscience, 7(6), 581–582.

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants DA00436, DA10455, DA14241 and AA15632 from the National Institutes of Health and by NARSAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina R. Picciotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brunzell, D.H., Picciotto, M.R. (2008). Molecular Mechanisms Underlying the Motivational Effects of Nicotine. In: Caggiula, A., Bevins, R. (eds) The Motivational Impact of Nicotine and its Role in Tobacco Use. Nebraska Symposium on Motivation, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78748-0_3

Download citation

Publish with us

Policies and ethics