Synaptic Plasticity Within Midbrain Dopamine Centers Contributes to Nicotine Addiction

  • Andon N. PlaczekEmail author
  • John A. Dani
Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)

Introduction to the Health Problem

Approximately one-third of the world’s adult population uses tobacco, making nicotine addiction a major worldwide health problem. The majority of smokers begin during adolescence, and for those that continue to smoke die from a smoking-related disease (WHO, 1997). In the developing world, smoking-related deaths are on the rise (Peto et al., 1996) and the illness caused by smoking is estimated to be the largest cause of premature deaths in developed nations (Peto, Lopez, Boreham, Thun, & Heath, 1992).

As the primary addictive substance in tobacco smoke (Karan, Dani, & Benowitz, 2003), nicotine has been shown to produce drug-seeking behavior in animals (Corrigall, 1999; Corrigall & Coen, 1989; Di Chiara, 2000; Stolerman & Shoaib, 1991). Nicotine is also known to have effects similar to other addictive drugs, including reinforcement of self-administration, increased locomotor activity (Bevins, Eurek, & Besheer, 2005), enhanced reward from intracranial...


Ventral Tegmental Area Nicotinic Receptor Action Potential Firing Excitatory Synaptic Transmission nAChR Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albuquerque, E. X., Pereira, E. F., Alkondon, M., Schrattenholz, A., & Maelicke, A. (1997). Nicotinic acetylcholine receptors on hippocampal neurons: Distribution on the neuronal surface and modulation of receptor activity. Journal of Receptor and Signal Transduction Research, 17(1–3), 243–266.Google Scholar
  2. Alkondon, M., Pereira, E. F., Wonnacott, S., & Albuquerque, E. X. (1992). Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Molecular Pharmacology, 41(4), 802–808.PubMedGoogle Scholar
  3. Balfour, D. J., Wright, A. E., Benwell, M. E., & Birrell, C. E. (2000). The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research, 113(1–2), 73–83.CrossRefGoogle Scholar
  4. Benowitz, N. L., Porchet, H., & Jacob, P., 3rd. (1989). Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Progress in Brain Research, 79, 279–287.PubMedCrossRefGoogle Scholar
  5. Berke, J. D., & Hyman, S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25(3), 515–532.PubMedCrossRefGoogle Scholar
  6. Bevins, R. A., Eurek, S., & Besheer, J. (2005). Timing of conditioned responding in a nicotine locomotor conditioning preparation: Manipulations of the temporal arrangement between context cues and drug administration. Behavioural Brain Research, 159(1), 135–143.PubMedCrossRefGoogle Scholar
  7. Buisson, B., & Bertrand, D. (2001). Chronic exposure to nicotine upregulates the human (alpha)4 (beta)2 nicotinic acetylcholine receptor function. The Journal of Neuroscience, 21(6), 1819–1829.PubMedGoogle Scholar
  8. Calabresi, P., Lacey, M. G., & North, R. A. (1989). Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. British Journal of Pharmacology, 98(1), 135–140.PubMedGoogle Scholar
  9. Castro, N. G., & Albuquerque, E. X. (1995). alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophysical Journal, 68(2), 516–524.PubMedCrossRefGoogle Scholar
  10. Charpantier, E., Barneoud, P., Moser, P., Besnard, F., & Sgard, F. (1998). Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport, 9(13), 3097–3101.PubMedCrossRefGoogle Scholar
  11. Clarke, P. B. (1990). Mesolimbic dopamine activation – the key to nicotine reinforcement? Ciba Foundation Symposium, 152, 153–162; discussion 162–158.PubMedGoogle Scholar
  12. Clarke, P. B. (1991). Nicotinic receptor blockade therapy and smoking cessation. British Journal of Addiction, 86(5), 501–505.PubMedCrossRefGoogle Scholar
  13. Clarke, P. B., Schwartz, R. D., Paul, S. M., Pert, C. B., & Pert, A. (1985). Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. The Journal of Neuroscience, 5(5), 1307–1315.PubMedGoogle Scholar
  14. Corrigall, W. A. (1999). Nicotine self-administration in animals as a dependence model. Nicotine Tobaco Research, 1(1), 11–20.CrossRefGoogle Scholar
  15. Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.CrossRefGoogle Scholar
  16. Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278–284.CrossRefGoogle Scholar
  17. Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl), 107(2–3), 285–289.CrossRefGoogle Scholar
  18. Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729.PubMedCrossRefGoogle Scholar
  19. Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, Biochemistry, and Behavior, 70(4), 439–446.PubMedCrossRefGoogle Scholar
  20. Dani, J. A., & Harris, R. A. (2005). Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 8(11), 1465–1470.PubMedCrossRefGoogle Scholar
  21. Dani, J. A., & Heinemann, S. (1996). Molecular and cellular aspects of nicotine abuse. Neuron, 16(5), 905–908.PubMedCrossRefGoogle Scholar
  22. Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31(3), 349–352.PubMedCrossRefGoogle Scholar
  23. Di Chiara, G. (1999). Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology, 375(1–3), 13–30.Google Scholar
  24. Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393(1–3), 295–314.Google Scholar
  25. Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Science of the United States of America, 85(14), 5274–5278.CrossRefGoogle Scholar
  26. Ge, S., & Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. The Journal of Neuroscience, 25(26), 6084–6091.PubMedCrossRefGoogle Scholar
  27. Goldner, F. M., Dineley, K. T., & Patrick, J. W. (1997). Immunohistochemical localization of the nicotinic acetylcholine receptor subunit alpha6 to dopaminergic neurons in the substantia nigra and ventral tegmental area. Neuroreport, 8(12), 2739–2742.PubMedCrossRefGoogle Scholar
  28. Gourlay, S. G., & Benowitz, N. L. (1997). Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clinical Pharmacology and Therapeutics, 62(4), 453–463.PubMedCrossRefGoogle Scholar
  29. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713–716.PubMedCrossRefGoogle Scholar
  30. Grenhoff, J., & Johnson, S. W. (1996). Sulfonylureas enhance GABAA synaptic potentials in rat midbrain dopamine neurones. Acta Physiologica Scandinavica, 156(2), 147–148.PubMedCrossRefGoogle Scholar
  31. Guo, J. Z., Tredway, T. L., & Chiappinelli, V. A. (1998). Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. The Journal of Neuroscience, 18(6), 1963–1969.PubMedGoogle Scholar
  32. Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F., & London, E. D. (1993). Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug and Alcohol Dependence, 33(1), 23–29.PubMedCrossRefGoogle Scholar
  33. Imperato, A., Mulas, A., & Di Chiara, G. (1986). Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology, 132 (2–3), 337–338.CrossRefGoogle Scholar
  34. Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31(1), 131–141.PubMedCrossRefGoogle Scholar
  35. Jones, I. W., Bolam, J. P., & Wonnacott, S. (2001). Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. The Journal of Comparative Neurology, 439(2), 235–247.PubMedCrossRefGoogle Scholar
  36. Jones, S., Sudweeks, S., & Yakel, J. L. (1999). Nicotinic receptors in the brain: correlating physiology with function. Trends in Neurosciences, 22(12), 555–561.PubMedCrossRefGoogle Scholar
  37. Karan, L., Dani, J. A., & Benowitz, N. (2003). The Pharmacology of Nicotine and Tobacco. . In Principles of Addiction Medicine (pp. 225–248): American Society of Addiction Medicine.Google Scholar
  38. Klink, R., de Kerchove d'Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. The Journal of Neuroscience, 21(5), 1452–1463.PubMedGoogle Scholar
  39. Le Novere, N., Zoli, M., & Changeux, J. P. (1996). Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. European Journal of Neuroscience, 8(11), 2428–2439.PubMedCrossRefGoogle Scholar
  40. Li, X., Rainnie, D. G., McCarley, R. W., & Greene, R. W. (1998). Presynaptic nicotinic receptors facilitate monoaminergic transmission. The Journal of Neuroscience, 18(5), 1904–1912.PubMedGoogle Scholar
  41. Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33(6), 905–919.PubMedCrossRefGoogle Scholar
  42. Mansvelder, H. D., & McGehee, D. S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27(2), 349–357.PubMedCrossRefGoogle Scholar
  43. Mansvelder, H. D., & McGehee, D. S. (2002). Cellular and synaptic mechanisms of nicotine addiction. The Journal of Neurobiology, 53(4), 606–617.CrossRefGoogle Scholar
  44. Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.PubMedCrossRefGoogle Scholar
  45. McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1692–1696.PubMedCrossRefGoogle Scholar
  46. McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review Physiology, 57, 521–546.CrossRefGoogle Scholar
  47. Nestler, E. J. (1993). Cellular responses to chronic treatment with drugs of abuse. Critical Reviews in Neurobiology, 7(1), 23–39.PubMedGoogle Scholar
  48. Nisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacology & Toxicology, 75(6), 348–352.Google Scholar
  49. Peto, R., Lopez, A. D., Boreham, J., Thun, M., & Heath, C., Jr. (1992). Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet, 339(8804), 1268–1278.PubMedCrossRefGoogle Scholar
  50. Peto, R., Lopez, A. D., Boreham, J., Thun, M., Heath, C., Jr., & Doll, R. (1996). Mortality from smoking worldwide. British Medical Bulletin, 52(1), 12–21.PubMedGoogle Scholar
  51. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.PubMedCrossRefGoogle Scholar
  52. Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401–404.PubMedCrossRefGoogle Scholar
  53. Pidoplichko, V. I., Noguchi, J., Areola, O. O., Liang, Y., Peterson, J., Zhang, T., et al. (2004). Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learning & Memory, 11(1), 60–69.CrossRefGoogle Scholar
  54. Pontieri, F. E., Tanda, G., Orzi, F., & Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382(6588), 255–257.PubMedCrossRefGoogle Scholar
  55. Quick, M. W., & Lester, R. A. (2002). Desensitization of neuronal nicotinic receptors. The Journal of Neurobiology, 53(4), 457–478.CrossRefGoogle Scholar
  56. Radcliffe, K. A., & Dani, J. A. (1998). Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. The Journal of Neuroscience, 18(18), 7075–7083.PubMedGoogle Scholar
  57. Radcliffe, K. A., Fisher, J. L., Gray, R., & Dani, J. A. (1999). Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Annals of the New York Academy of Sciences, 868, 591–610.PubMedCrossRefGoogle Scholar
  58. Rathouz, M. M., Vijayaraghavan, S., & Berg, D. K. (1996). Elevation of intracellular calcium levels in neurons by nicotinic acetylcholine receptors. Molecular Neurobiology, 12(2), 117–131.PubMedCrossRefGoogle Scholar
  59. Role, L. W., & Berg, D. K. (1996). Nicotinic receptors in the development and modulation of CNS synapses. Neuron, 16(6), 1077–1085.PubMedCrossRefGoogle Scholar
  60. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.PubMedCrossRefGoogle Scholar
  61. Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., & Patrick, J. W. (1993). Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. The Journal of Neuroscience, 13(2), 596–604.PubMedGoogle Scholar
  62. Spanagel, R., & Weiss, F. (1999). The dopamine hypothesis of reward: past and current status. Trends in Neurosciences, 22(11), 521–527.PubMedCrossRefGoogle Scholar
  63. Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology (Berl), 117(1), 2–10; discussion 14–20.CrossRefGoogle Scholar
  64. Stolerman, I. P., & Shoaib, M. (1991). The neurobiology of tobacco addiction. Trends in Pharmacological Sciences, 12(12), 467–473.PubMedCrossRefGoogle Scholar
  65. Wada, E., McKinnon, D., Heinemann, S., Patrick, J., & Swanson, L. W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Research, 526(1), 45–53.PubMedCrossRefGoogle Scholar
  66. Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. The Journal of Comprative Neurology, 284(2), 314–335.CrossRefGoogle Scholar
  67. Watkins, S. S., Koob, G. F., & Markou, A. (2000). Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tobacco Research, 2(1), 19–37.PubMedCrossRefGoogle Scholar
  68. WHO. (1997). Tobacco or health, a global status report. World Health Organization, 495.Google Scholar
  69. Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20(2), 92–98.PubMedCrossRefGoogle Scholar
  70. Wonnacott, S., Drasdo, A., Sanderson, E., & Rowell, P. (1990). Presynaptic nicotinic receptors and the modulation of transmitter release. Ciba Foundation Symposium, 152, 87–101; discussion 102–105.PubMedGoogle Scholar
  71. Wonnacott, S., Kaiser, S., Mogg, A., Soliakov, L., & Jones, I. W. (2000). Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology, 393(1–3), 51–58.CrossRefGoogle Scholar
  72. Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. The Journal of Neuroscience, 23(8), 3176–3185.PubMedGoogle Scholar
  73. Zhou, F. M., Liang, Y., & Dani, J. A. (2001). Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4(12), 1224–1229.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Neuroscience, Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonUSA

Personalised recommendations