Advertisement

Data Integration

  • Aaron Fait
  • Alisdair R. Fernie
Chapter

In the last decade, an unprecedented amount of post-genomic experimental information has become available. Datasets originating from transcriptomic analysis, metabolite profiling, and proteomics can be produced faster, with ever increasing accuracy and decreasing cost. However, putting the pieces together is not trivial. Our understanding of cellular phenomena based on “omics” data depends on – and is limited by – our capability to implement appropriate analysis tools able to integrate the different “omics” approaches [75, 78]. Bringing together such disparate datasets presents a considerable challenge [76]. Such analysis is time consuming and prone to both error and speculation. Consequently, there is a substantial need to consider both the methods currently being used and the statistical principles involved in the analysis of post-genomic experimental data.

Keywords

Independent Component Analysis Metabolic Network Principle Component Analysis Cold Acclimation Canonical Correlation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe T, Sugawara H, Kanaya S, Kinouchi M, Ikemura T (2006) Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes. Gene 365:27–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Abe T, Sugawara H, Kinouchi M, Kanaya S, Ikemura T (2005) Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Res 12:281–290.PubMedCrossRefGoogle Scholar
  3. 3.
    Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T (2003) Informatics for unveiling hidden genome signatures. Genome Res 13:693–702.PubMedCrossRefGoogle Scholar
  4. 4.
    Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714.PubMedCrossRefGoogle Scholar
  5. 5.
    Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996.PubMedGoogle Scholar
  6. 6.
    Baxter CJ, Liu JL, Fernie AR, Sweetlove LJ (2007) Determination of metabolic fluxes in a non-steady-state system. Phytochemistry 68:2313–2319.PubMedCrossRefGoogle Scholar
  7. 7.
    Sumner LW, Urbanczyk-Wochniak E, Broeckling CD (2008) Metabolomics data analysis, visualization, and integration. Methods Mol Biol 406:409–436.CrossRefGoogle Scholar
  8. 8.
    Cakir T, Patil KR, Onsan Z, Ulgen KO, Kirdar B, Nielsen J (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol 2:50.PubMedCrossRefGoogle Scholar
  9. 9.
    Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396.PubMedCrossRefGoogle Scholar
  10. 10.
    Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897.PubMedCrossRefGoogle Scholar
  11. 11.
    Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34(Database issue):D511–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheadle C, Cho-Chung YS, Becker KG, Vawter MP (2003) Application of z-score transformation to Affymetrix data. Appl Bioinformatics 2:209–217.PubMedGoogle Scholar
  13. 13.
    Datta S, Datta S (2006) Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics 7:397.PubMedCrossRefGoogle Scholar
  14. 14.
    Datta S, Datta S (2003) Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19:459–466.PubMedCrossRefGoogle Scholar
  15. 15.
    Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854.PubMedCrossRefGoogle Scholar
  16. 16.
    Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19.PubMedCrossRefGoogle Scholar
  17. 17.
    Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769.PubMedCrossRefGoogle Scholar
  18. 18.
    Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270: 579–588.PubMedCrossRefGoogle Scholar
  19. 19.
    Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789.PubMedCrossRefGoogle Scholar
  20. 20.
    Fu J, Swertz MA, Keurentjes JJ, Jansen RC (2007) MetaNetwork: a computational protocol for the genetic study of metabolic networks. Nature Protoc 2:685–694.CrossRefGoogle Scholar
  21. 21.
    Gibon Y, Usadel B, Blaesing OE, Kamlage B, Hoehne M, Trethewey R, Stitt M (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biol 7:R76.PubMedCrossRefGoogle Scholar
  22. 22.
    Gnanadesikan R (1977) Methods for Statistical Analysis of Multivariate Observations, Wiley, New York.Google Scholar
  23. 23.
    Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300.PubMedCrossRefGoogle Scholar
  24. 24.
    Hair JF Jr, Anderson RE, Tatham RL, Black WC (1998) Multivariate Data Analysis, 5th ed., Prentice Hall Inc, Prentice Hall: Upper Saddle River.Google Scholar
  25. 25.
    Hand DJ (2007) Principles of data mining. Drug Saf 30:621–622.PubMedCrossRefGoogle Scholar
  26. 26.
    Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113.PubMedCrossRefGoogle Scholar
  27. 27.
    Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K (2006) Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J 48: 557–571.PubMedCrossRefGoogle Scholar
  28. 28.
    Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806.PubMedCrossRefGoogle Scholar
  29. 29.
    Hill AA, Hunter CP, Tsung BT, Tucker-Kellogg G, Brown EL (2000) Genomic analysis of gene expression in C. elegans. Science 290:809–812.PubMedCrossRefGoogle Scholar
  30. 30.
    Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–22595.PubMedCrossRefGoogle Scholar
  31. 31.
    Hirai MY, Saito K (2004) Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55:1871–1879.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:10205–10210.PubMedCrossRefGoogle Scholar
  33. 33.
    Jensen LJ, Saric J, Bork P (2006) Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet 7:119–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 2:241–254.CrossRefGoogle Scholar
  35. 35.
    Junker BH, Lonien J, Heady LE, Rogers A, Schwender J (2007) Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochemistry 68:2232–2242.PubMedCrossRefGoogle Scholar
  36. 36.
    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34(Database issue):D354–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 50: 967–981.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168.PubMedCrossRefGoogle Scholar
  39. 39.
    Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307.PubMedCrossRefGoogle Scholar
  40. 40.
    Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A 104:1708–1713.PubMedCrossRefGoogle Scholar
  41. 41.
    Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nature Genet 38:842–849.PubMedCrossRefGoogle Scholar
  42. 42.
    Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370.PubMedGoogle Scholar
  43. 43.
    Kohonen T (2006) Self-organizing neural projections. Neural Netw 19:723–733.PubMedCrossRefGoogle Scholar
  44. 44.
    Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:2006.0034.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu F, Vantoai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129.PubMedCrossRefGoogle Scholar
  46. 46.
    Levenstien MA, Yang YN, Ott J (2003) Statistical significance for hierarchical clustering in genetic association and microarray expression studies. BMC Bioinformatics 4:62.PubMedCrossRefGoogle Scholar
  47. 47.
    Livesey JH (2007) Kurtosis provides a good omnibus test for outliers in small samples. Clin Biochem 40:1032–1046.PubMedCrossRefGoogle Scholar
  48. 48.
    Martins AM, Camacho D, Shuman J, Sha W, Mendes P, Shulaev V (2004) A systems biology study of two distinct growth phases of Saccharomyces cerevisiae cultures. Current Genomics 5:649–663.CrossRefGoogle Scholar
  49. 49.
    Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Torjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764.PubMedCrossRefGoogle Scholar
  50. 50.
    Morgenthal K, Weckwerth W, Steuer R (2006) Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems 83:108–117.PubMedCrossRefGoogle Scholar
  51. 51.
    Morgenthal K, Wienkoop S, Wolschin F, Weckwerth W (2007) Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol Biol 358:57–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Nacher JC, Schwartz JM, Kanehisa M, Akutsu T (2006) Identification of metabolic units induced by environmental signals. Bioinformatics 22:e375–e383.PubMedCrossRefGoogle Scholar
  53. 53.
    Ng A, Bursteinas B, Gao Q, Mollison E, Zvelebil M (2006) Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform 7:318–330.PubMedCrossRefGoogle Scholar
  54. 54.
    Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035.PubMedCrossRefGoogle Scholar
  55. 55.
    Quackenbush J (2007) Extracting biology from high-dimensional biological data. J Exp Biol 210:1507–1517.PubMedCrossRefGoogle Scholar
  56. 56.
    Quackenbush J (2002) Microarray data normalization and transformation. Nature Genet 32 Suppl:496–501.PubMedCrossRefGoogle Scholar
  57. 57.
    Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511.PubMedCrossRefGoogle Scholar
  58. 58.
    Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127:749–764.PubMedCrossRefGoogle Scholar
  59. 59.
    Roessner-Tunali U, Liu J, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in (13)C labelled isotopes. Plant J 39: 668–679.PubMedCrossRefGoogle Scholar
  60. 60.
    Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99.PubMedCrossRefGoogle Scholar
  61. 61.
    Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206.PubMedCrossRefGoogle Scholar
  62. 62.
    Saidi SA, Holland CM, Kreil DP, MacKay DJC, Charnock-Jones DS, Print CG, Smith SK (2004) Independent component analysis of microarray data in the study of endometrial cancer. ONCOGENE 23: 6677–6683.PubMedCrossRefGoogle Scholar
  63. 63.
    Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnol 24:447–454.CrossRefGoogle Scholar
  64. 64.
    Scholz M, Selbig J (2007) Visualization and analysis of molecular data. Methods Mol Biol 358:87–104.PubMedCrossRefGoogle Scholar
  65. 65.
    Scholz M, Kaplan F, Guy CL, Kopka J, Selbig J (2005) Non-linear PCA: a missing data approach. Bioinformatics. 21:3887–3895.PubMedCrossRefGoogle Scholar
  66. 66.
    Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454.PubMedCrossRefGoogle Scholar
  67. 67.
    Schramm G, Zapatka M, Eils R, Konig R (2007) Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. BMC Bioinformatics. 8:149.PubMedCrossRefGoogle Scholar
  68. 68.
    Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7:309–317.PubMedCrossRefGoogle Scholar
  69. 69.
    Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–29453.PubMedCrossRefGoogle Scholar
  70. 70.
    Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047.PubMedCrossRefGoogle Scholar
  71. 71.
    Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. 3rd ed., W.H. Freeman, New York.Google Scholar
  72. 72.
    Steuer R, Morgenthal K, Weckwerth W, Selbig J (2007) A gentle guide to the analysis of metabolomic data. Methods Mol Biol 358:105–126.PubMedCrossRefGoogle Scholar
  73. 73.
    Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026.PubMedCrossRefGoogle Scholar
  74. 74.
    Studart-Guimaraes C, Fait A, Nunes-Nesi A, Carrari F, Usadel B, Fernie AR (2007) Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation of the gamma-aminobutyrate shunt in illuminated tomato leaves. Plant Physiology 145:626–639.PubMedCrossRefGoogle Scholar
  75. 75.
    Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol 168:9–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425.PubMedCrossRefGoogle Scholar
  77. 77.
    Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18 Suppl 2:S241–S248.PubMedGoogle Scholar
  78. 78.
    Thomas CE, Ganji G (2006) Integration of genomic and metabonomic data in systems biology – are we ‘there’ yet? Curr Opin Drug Discov Devel 9:92–100.PubMedGoogle Scholar
  79. 79.
    Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235.PubMedCrossRefGoogle Scholar
  80. 80.
    Tuikkala J, Elo LE, Nevalainen OS, Aittokallio T (2008) Missing value imputation improves clustering and interpretation of gene expression microarray data. BMC Bioninformatics 9:202.CrossRefGoogle Scholar
  81. 81.
    Urbanczyk-Wochniak E, Willmitzer L, Fernie AR (2007) Integrating profiling data: using linear correlation to reveal coregulation of transcript and metabolites. Methods Mol Biol 358: 77–85.PubMedCrossRefGoogle Scholar
  82. 82.
    Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Blasing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol 60:773–792.PubMedCrossRefGoogle Scholar
  83. 83.
    Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221:891–903.PubMedCrossRefGoogle Scholar
  84. 84.
    Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993.PubMedCrossRefGoogle Scholar
  85. 85.
    Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci U S A 101:7809–7814.PubMedCrossRefGoogle Scholar
  86. 86.
    Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689.PubMedCrossRefGoogle Scholar
  87. 87.
    Wiechert W (2002) An introduction to 13C metabolic flux analysis. Genet Eng (N Y) 24: 215–238.Google Scholar
  88. 88.
    Yamanishi Y, Itoh M, Kanehisa M (2002) Extraction of organism groups from phylogenetic profiles using independent component analysis. Genome Inform 13:61–70.PubMedGoogle Scholar
  89. 89.
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ben-Gurion University of the Negev, Jacob Blaustein Insts. for Desert Research, French Associates Institute for Agriculture & Biotechnology of DrylandsIsrael
  2. 2.Max Planck Institute for Molecular Plant PhysiologyGermany

Personalised recommendations