Quantification of Isotope Label

  • D.K. Allen
  • R.G. Ratcliffe

The use of stable and radioactive isotopes of low natural abundance has a long history in plant research. At a metabolic level, isotope labeling leads to the discovery of new pathways (e.g., [48, 70]) and to detailed descriptions of the fluxes that underpin the metabolic phenotype [93, 108]. In particular, and as described in detail elsewhere in this book, 13C-labeling experiments provide the inputs for generating the large-scale flux maps that emerge from network flux analysis. The availability of robust, accurate methods for the analysis of the redistribution of label is central to the success of this approach, and so this chapter focuses on the nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques that make this possible.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Natural Abundance Nuclear Magnetic Resonance Spectroscopy Flux Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68:2197–2210.PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [13C]glucose and [14C]glucose. Plant Physiol 138:2220–2232.PubMedCrossRefGoogle Scholar
  3. 3.
    Antoniewicz M, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559.PubMedCrossRefGoogle Scholar
  4. 4.
    Ashcroft AE (1997) Ionization Methods in Organic Mass Spectrometry. Royal Society of Chemistry, Cambridge UK.Google Scholar
  5. 5.
    Bacher A, Le Van Q, Keller PJ, Floss HG (1983) Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring. J Biol Chem 258: 13431–13437.PubMedGoogle Scholar
  6. 6.
    Bentley R, Saha NC, Sweeley CC (1965) Separation of protium and deuterium forms of carbohydrates by gas chromatography. Anal Chem 37:1118–1122.CrossRefGoogle Scholar
  7. 7.
    Berger S, Braun S (2004) 200 and More NMR Experiments. Wiley-VCH Verlag, Weinheim, Germany.Google Scholar
  8. 8.
    Berger TA (1996) Separation of a gasoline on an open tubular column with 1.3 million effective plates. Chromatographia 42:63–71.CrossRefGoogle Scholar
  9. 9.
    Bergner EA, Lee WNP (1995) Testing gas chromatographic/mass spectrometric systems for linearity of response. J Mass Spectrom 30:778–780.CrossRefGoogle Scholar
  10. 10.
    Beylot M, David F, Brunengraber H (1993) Determination of the 13C-labeling pattern of glutamate by gas chromatography-mass spectrometry. Anal Biochem 212:532–536.PubMedCrossRefGoogle Scholar
  11. 11.
    Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monsaccharide analysis. Carbohydrate Res 113:291–299.CrossRefGoogle Scholar
  12. 12.
    Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314.CrossRefGoogle Scholar
  13. 13.
    Browse J, McCourt PJ, Somerville CR (1986) Fatty-acid composition of leaf lipids determined after combined digestion and fatty-acid methyl-ester formation from fresh tissue. Anal Biochem 152:141–145.PubMedCrossRefGoogle Scholar
  14. 14.
    Brunengraber H, Kelleher JK, Des Rosiers C (1997) Applications of mass isotopomer analysis to nutrition research. Annu Rev Nutr 17:559–596.PubMedCrossRefGoogle Scholar
  15. 15.
    Chatham JC, Bouchard B, Des Rosiers C (2003) A comparison between NMR and GCMS 13C-isotopomer analysis in cardiac metabolism. Mol Cell Biochem 249:105–112.PubMedCrossRefGoogle Scholar
  16. 16.
    Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Met Eng 1: 282–290.CrossRefGoogle Scholar
  17. 17.
    Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose. Biotechnol Bioeng 68:652–659.PubMedCrossRefGoogle Scholar
  18. 18.
    Christie WW (2003) Lipid Analysis. Oily Press, Bridgwater.Google Scholar
  19. 19.
    Coates SW, Gurney Jr T, Sommers LW, Yeh M, Hirschberg CB (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255:9225–9229.PubMedGoogle Scholar
  20. 20.
    Comte B, Vincent G, Bouchard B, Jette M, Cordeau S, Des Rosiers C (1997) A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J Biol Chem 272:26125–26131.PubMedCrossRefGoogle Scholar
  21. 21.
    Costenoble R, Muller D, Barl T, van Gulik WM, van Winden WA, Reuss M, Heijnen JJ (2007) 13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae FEMS Yeast Res 7:511–526.PubMedCrossRefGoogle Scholar
  22. 22.
    da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S (1997) Starch metabolism in developing embryos of oilseed rape. Planta 203:480–487.CrossRefGoogle Scholar
  23. 23.
    Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649.PubMedCrossRefGoogle Scholar
  24. 24.
    de Graaf AA, Mahle M, Möllney M, Wiechert W, Stahmann P, Sahm H (2000) Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference spectroscopy. J Biotechnol 77:20–35.Google Scholar
  25. 25.
    Des Rosiers C, Montgomery JA, Descrochers S, Garneau M, David F, Mamer OA, Brunegraber H (1988) Interference of 3-hydroxyisobutyrate with measurements of ketone body concentration and isotopic enrichment by gas chromatography-mass spectrometry. Anal Biochem 173:96–105.PubMedCrossRefGoogle Scholar
  26. 26.
    Des Rosiers C, Di Donato L, Comte B, Laplante A, Marcoux C, David F, Fernandez CA, Brunengraber H (1995) Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. J Biol Chem 270:10027–10036.PubMedCrossRefGoogle Scholar
  27. 27.
    Di Donato L, Des Rosiers C, Montgomery JA, David F, Garneau M, Brunengraber H (1993) Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the 13C labeling pattern of glutamate. J Biol Chem 268:4170–4180.PubMedGoogle Scholar
  28. 28.
    Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J Biol Chem 270: 13147–13159.PubMedCrossRefGoogle Scholar
  29. 29.
    Dieuaide-Noubhani M, Canioni P, Raymond P (1997) Sugar-starvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol 115:1505–1513.PubMedGoogle Scholar
  30. 30.
    Edwards S, Nguyen BT, Do B, Roberts JKM (1998) Contribution of malic enzme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance and gas chromatography-mass spectrometry. Plant Physiol 116: 1073–1081.PubMedCrossRefGoogle Scholar
  31. 31.
    Eisenreich W, Ettenhuber C, Laupitz R, Theus C, Bacher A (2004) Isotopolog perturbation techniques for metabolic networks: metabolic recycling of nutritional glucose in Drosophila melanogaster. Proc Natl Acad Sci USA 101:6764–6769.PubMedCrossRefGoogle Scholar
  32. 32.
    Ettenhuber C, Radykewicz T, Kofer W, Koop HU, Bacher A, Eisenreich W (2005) Metabolic flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants. Phytochemistry 66:323–335.PubMedCrossRefGoogle Scholar
  33. 33.
    Fagerquist CK, Schwarz JM (1998) Gas-phase acid-base chemistry and its effects on mass isotopomer abundance measurements of biomolecular ions. J Mass Spectrom 33:144–153.CrossRefGoogle Scholar
  34. 34.
    Fagerquist CK, Neese RA, Hellerstein MK (1999) Molecular ion fragmentation and its effects on mass isotopomer abundances of fatty acid methyl esters ionized by electron impact. J Am Soc Mass Spectrom 10:430–439.PubMedCrossRefGoogle Scholar
  35. 35.
    Fagerquist CK, Hellerstein MK, Faubert D, Bertrand MJ (2001) Elimination of the concentration dependence in mass isotopomer abundance mass spectrometry of methyl palmitate using metastable atom bombardment. J Am Soc Mass Spectrom 12:754–761.PubMedCrossRefGoogle Scholar
  36. 36.
    Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219.Google Scholar
  37. 37.
    Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance J Mass Spectrom 31:255–262.PubMedCrossRefGoogle Scholar
  38. 38.
    Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phospho-transferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263.PubMedCrossRefGoogle Scholar
  39. 39.
    Feuge RO, Gros AT (1949) Modification of vegetable oils. 7. Alkali catalyzed interesterification of peanut oil with ethanol. J Amer Oil Chem Soc 3:97–102.CrossRefGoogle Scholar
  40. 40.
    Filer CN (1999) Isotopic fractionation of organic compounds in chromatography. J Labeled Cpd Radiopharm 42:169–197.CrossRefGoogle Scholar
  41. 41.
    Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891.PubMedCrossRefGoogle Scholar
  42. 42.
    Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatog A 826:109–134.CrossRefGoogle Scholar
  43. 43.
    Freeman R (2003) Magnetic Resonance in Chemistry and Medicine. Oxford University Press, Oxford.Google Scholar
  44. 44.
    Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4:Art. 30.CrossRefGoogle Scholar
  45. 45.
    Glawischnig E, Girl A, Tomas A, Bacher A, Eisenreich W (2002) Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol 130:1717–1727.PubMedCrossRefGoogle Scholar
  46. 46.
    Grob RL (1985) Modern Practice of Gas Chromatography. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  47. 47.
    Harrison AG, Cotter RJ (1990) Methods of ionization. Meth Enzymol 193:3–37.CrossRefGoogle Scholar
  48. 48.
    Hatch MD, Slack CR (1966) Photosynthesis by sugar cane leaves – a new carboxylation reaction and pathway of sugar formation. Biochem J. 101:103–111.PubMedGoogle Scholar
  49. 49.
    Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A (1997) Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest 100:1305–1319.PubMedCrossRefGoogle Scholar
  50. 50.
    Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Öz G, Seaquist ER, Shestov A, Uğurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modelling in the brain: a practical perspective. Magn Reson Imaging 24:527–539.PubMedCrossRefGoogle Scholar
  51. 51.
    Hore PJ (1995) Nuclear Magnetic Resonance. Oxford University Press, Oxford.Google Scholar
  52. 52.
    Huege J, Sulpice R, Gibon Y, Lisec J, Koehl K, Kopka J (2007) GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labeling. Phytochemistry 68:2258–2272.PubMedCrossRefGoogle Scholar
  53. 53.
    Husek P, Macek K (1975) Gas-chromatography of amino acids. J Chromatog 113:139–230.CrossRefGoogle Scholar
  54. 54.
    Husek P, Simek P (2001) Advances in amino acid analysis. LC GC North America 19: 986–999.Google Scholar
  55. 55.
    Jeffrey FMH, Roach JS, Storey CJ, Sherry AD, Malloy CR (2002) 13C Isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300:192–205.PubMedCrossRefGoogle Scholar
  56. 56.
    Jin ES, Jones JG, Merritt M, Burgess SC, Malloy CR, Sherry AD (2004) Glucose production, gluconeogenesis, and hepatic tricarboxylic acid cycle fluxes measured by nuclear magnetic resonance analysis of a single glucose derivative. Anal Biochem 327:149–155.PubMedCrossRefGoogle Scholar
  57. 57.
    Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696.PubMedCrossRefGoogle Scholar
  58. 58.
    Kiefer P, Nicolas C, Letisse F, Portais JC (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360:182–188.PubMedCrossRefGoogle Scholar
  59. 59.
    Kitson FG, Larsen BS, McEwen CN (1996) Gas Chromatography and Mass Spectrometry. Academic Press, San Diego.Google Scholar
  60. 60.
    Klapa MI, Aon JC, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem 270:3525–3542.Google Scholar
  61. 61.
    Kleijn RJ, Geertman JMA, Nfor BK, Ras C, Schipper D, Pronk JT, Heijnen JJ, van Maris AJA, van Winden WA (2007) Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived 13C-labelling data. FEMS Yeast Res 7:216–231.PubMedCrossRefGoogle Scholar
  62. 62.
    Kopka J, Ohlrogge JB, Jaworski JG (1995) Analysis of in vivo levels of acyl-thioesters with gas chromatography/mass spectrometry of the butyl amide derivative. Anal Biochem 224:51–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265.PubMedCrossRefGoogle Scholar
  64. 64.
    Kruger NJ, Huddleston JE, Le Lay P, Brown ND, Ratcliffe RG (2007) Network flux analysis: Impact of 13C-substrates on metabolism in Arabidopsis thaliana cell suspension cultures. Phytochemistry 68:2176–2188.PubMedCrossRefGoogle Scholar
  65. 65.
    Künnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2–13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277.PubMedCrossRefGoogle Scholar
  66. 66.
    Lane AN, Fan TWM (2007) Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics 3:79–86.CrossRefGoogle Scholar
  67. 67.
    Lee WNP, Byerley LO, Berger EA (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee WNP, Bergner EA, Guo ZK (1992) Mass isotopomer pattern and precursor product relationship. Biol Mass Spectrom 21:114–122.PubMedCrossRefGoogle Scholar
  69. 69.
    Levitt MH (2002) Spin Dynamics. Basics of Nuclear Magnetic Resonance. Wiley-VCH Verlag, Weinheim.Google Scholar
  70. 70.
    Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett 400:271–274.PubMedCrossRefGoogle Scholar
  71. 71.
    London RE (1988) 13C labelling in studies of metabolic regulation. Prog Nucl Magn Reson Spectrosc 20:337–383.CrossRefGoogle Scholar
  72. 72.
    Low IA, Liu RH, Barker SA, Fish F, Settine RL, Piotrowski EG, Damert WC, Liu JY (1985) Selected ion monitoring mass spectrometry: parameters affecting quantitative determination. Biomed Mass Spectrom 12:633–637.CrossRefGoogle Scholar
  73. 73.
    Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatog A 1147: 153–164.CrossRefGoogle Scholar
  74. 74.
    MacLeod JK, Flanigan IL, Williams JF, Collins JG (2001) Mass spectrometric studies of the path of carbon in photosynthesis: positional isotopic analysis of 13C-labelled C4 to C7 sugar phosphates. J Mass Spectrom 36:500–508.PubMedCrossRefGoogle Scholar
  75. 75.
    Malone JG, Mittova V, Ratcliffe RG, Kruger NJ (2006) The response of carbohydrate metabolism in potato tubers to low temperature. Plant Cell Physiol 47:1309–1322.PubMedCrossRefGoogle Scholar
  76. 76.
    Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129.PubMedCrossRefGoogle Scholar
  77. 77.
    Massou S, Nicolas C, Letisse F, Portais J-C (2007) Application of 2D-TOCSY NMR to the measurement of specific 13C-enrichments in complex mixtures of 13C-labeled metabolites. Metab Eng 9:252–257.PubMedCrossRefGoogle Scholar
  78. 78.
    Massou S, Nicolas C, Letisse F, Portais J-C (2007) NMR-based fluxomics: quantitative 2D NMR methods for isotopomer analysis. Phytochemistry 68:2330–2340.PubMedCrossRefGoogle Scholar
  79. 79.
    Matthews DE, Hayes JM (1976) Systematic errors in gas chromatography-mass spectrometry isotope ratio measurements. Anal Chem 48:1375–1382.CrossRefGoogle Scholar
  80. 80.
    McLafferty FW (1959) Mass spectrometric analysis-molecular rearrangements. Anal Chem 31:82–87.CrossRefGoogle Scholar
  81. 81.
    Meier-Augenstein W, Watt PW, Langhans CD (1996) Influence of gas chromatographic parameters on measurement of 13C/12C isotope ratios by gas-liquid chromatography-combustion isotope ratio mass spectrometry. I. J Chromatog 752:233–241.CrossRefGoogle Scholar
  82. 82.
    Nanchen A, Fuhrer T, Sauer U (2006) Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. In: Weckwerth W (ed.) Methods in Molecular Biology, Vol. 358, Metabolomics: Methods and Protocols. Humana Presss, Totowa, NJ, pp. 177–198.Google Scholar
  83. 83.
    Niessen WMA (2001) Current Practice of Gas Chromatography-Mass Mpectrometry. Marcel Dekker, New York Basel.CrossRefGoogle Scholar
  84. 84.
    Park SM, Sinskey AJ, Stephanopoulos G (1997) Metabolic and physiological studies of Corynebacterium glutamicum mutants. Biotechnol Bioeng 55:864–879.PubMedCrossRefGoogle Scholar
  85. 85.
    Patterson BW, Carraro F, Wolfe RR (1993) Measurement of 15N enrichment in multiple amino acids and urea in a single analysis by gas chromatography/mass spectrometry. Biol Mass Spectrom 22:518–523.PubMedCrossRefGoogle Scholar
  86. 86.
    Pawlosky RJ, Sprecher HW, Salem N (1992) High-sensitivity negative-ion GC-MS method for detection of desaturated and chain-elongated products of deuterated linoleic and linolenic acids. J Lipid Res 33:1711–1717.PubMedGoogle Scholar
  87. 87.
    Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932–35941.PubMedCrossRefGoogle Scholar
  88. 88.
    Price NPJ (2004) Acyclic sugar derivatives for GC/MS analysis of 13C-enrichment during carbohydrate metabolism. Anal Chem 76:6566–6574.PubMedCrossRefGoogle Scholar
  89. 89.
    Prinsen E, Van Dongen, W, Esmans EL, Van Onckelen HA (1997) HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyzed indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22.CrossRefGoogle Scholar
  90. 90.
    Rantanen A, Rousu J, Kokkonen JT, Tarkiainen V, Ketola RA (2002) Computing positional isotopomer distributions from tandem mass spectrometric data. Met Eng 4:285–294.CrossRefGoogle Scholar
  91. 91.
    Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. Adv Bot Res 20: 43–123.CrossRefGoogle Scholar
  92. 92.
    Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526.PubMedCrossRefGoogle Scholar
  93. 93.
    Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. The Plant J 45:490–511.CrossRefGoogle Scholar
  94. 94.
    Ratcliffe RG, Roscher A, Shachar-Hill Y (2001) Plant NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 39:267–300.CrossRefGoogle Scholar
  95. 95.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23: 131–142.PubMedCrossRefGoogle Scholar
  96. 96.
    Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277: 43948–43960.PubMedCrossRefGoogle Scholar
  97. 97.
    Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotechnol 77:81–102.PubMedCrossRefGoogle Scholar
  98. 98.
    Rosenblatt J, Chinkes D, Wolfe M, Wolfe RR (1992) Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects. Am J Physiol 263:E584–596.PubMedGoogle Scholar
  99. 99.
    Rosman KJR, Taylor PDP (1998) Isotopic composition of the elements. Pure Appl Chem 70:217–235.CrossRefGoogle Scholar
  100. 100.
    Rousu J, Rantanen A, Ketola RA, Kokkonen JT (2005) Isotopomer distribution computation from tandem mass spectrometric data with overlapping fragment spectra. Spectroscopy 19:53–67.Google Scholar
  101. 101.
    Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature Biotechnol 15:448–452.CrossRefGoogle Scholar
  102. 102.
    Schaefer J, Stejskal EO, Beard CF (1975) Carbon-13 nuclear magnetic resonance analysis of metabolism in soybeans labelled by 13CO2. Plant Physiol 55:1048–1053.PubMedCrossRefGoogle Scholar
  103. 103.
    Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55: 831–840.PubMedCrossRefGoogle Scholar
  104. 104.
    Schmidt K, Nielsen J, Villadsen J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71:175–190.PubMedCrossRefGoogle Scholar
  105. 105.
    Schoeller DA (1980) Model for determining the influence of instrumental variations on the long-term precision of isotope dilution analyses. Biomed Mass Spectrom 7:457–463.CrossRefGoogle Scholar
  106. 106.
    Schwender J, Ohlrogge JB (2002) Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol 130: 347–361.PubMedCrossRefGoogle Scholar
  107. 107.
    Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentose phosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–29453.PubMedCrossRefGoogle Scholar
  108. 108.
    Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7:309–317.PubMedCrossRefGoogle Scholar
  109. 109.
    Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047.PubMedCrossRefGoogle Scholar
  110. 110.
    Sgoutas DS (1966) Isotope fractionation of methyl esters by gas-liquid chromatography. Nature 211:296–297.CrossRefGoogle Scholar
  111. 111.
    Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotropic microorganisms. Phytochemistry 68:2302–2312.PubMedCrossRefGoogle Scholar
  112. 112.
    Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Academic Press, New York.Google Scholar
  113. 113.
    Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331.PubMedCrossRefGoogle Scholar
  114. 114.
    Sriram G, Shanks JV (2004) Improvements in metabolic flux analysis using carbon bond labelling experiments: bondomer balancing and Boolean function mapping. Metab Eng 6:116–132.PubMedCrossRefGoogle Scholar
  115. 115.
    Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labelling, two dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057 (Erratum: Plant Physiol 142:1771).PubMedCrossRefGoogle Scholar
  116. 116.
    Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labelling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257.PubMedCrossRefGoogle Scholar
  117. 117.
    Sriram G, Iyer VV, Fulton DB, Shanks JV (2007) Identification of hexose hydrolysis products in metabolic flux analytes: A case study of levulinic acid in plant protein hydrolysate. Metab Eng 9:442–451.PubMedCrossRefGoogle Scholar
  118. 118.
    Stellaard F, Paumgartner G (1985) Measurement of isotope ratios in organic compounds at picomole quantities by capillary gas chromatography/quadrupole electron impact mass spectrometry. Biomed Mass Spectrom 12:560–564.Google Scholar
  119. 119.
    Sweeley CC, Elliott WH, Fries I, Ryhage R (1966) Mass spectrometric determination of unresolved components in gas chromatographic effluents. Anal Chem 38:1549–1553.PubMedCrossRefGoogle Scholar
  120. 120.
    Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448.PubMedCrossRefGoogle Scholar
  121. 121.
    Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quart Rev Biophys 31:41–106.CrossRefGoogle Scholar
  122. 122.
    Takayama M (1995) Metastable McLafferty rearrangement reaction in the electron impact ionization of stearic acid methyl ester. Int J Mass Spectrom Ion Proc 144:199–204.CrossRefGoogle Scholar
  123. 123.
    Talwar P, Wittmann C, Lengauer T, Heinzle E (2003) Software tool for automated processing of 13C labeling data from mass spectrometric spectra. Biotechniques 35:1214–1215.PubMedGoogle Scholar
  124. 124.
    Tesch M, de Graaf AA, Sahm H (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl Environ Microbiol 65:1099–1109.PubMedGoogle Scholar
  125. 125.
    Toya Y, Ishii N, Hiasawa T, Naba M, Hirai K, Sugawara K, Igarashi S, Shimizu K, Tomita M, Soga T (2007) Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. J Chromatog A 1159:134–141.CrossRefGoogle Scholar
  126. 126.
    Troufflard S, Roscher A, Thomasset B, Barbotin JN, Rawsthorne S, Portais JC (2007) In vivo 13C NMR determines metabolic fluxes and steady state in linseed embryos. Phytochemistry 68:2341–2350.PubMedCrossRefGoogle Scholar
  127. 127.
    Tulloch AP, Hogge LR, (1985) Investigation of the formation of MH+ and other ions in the mass spectrum of methyl decanoate using specifically deuterated decanoates. Chem Phys Lipids 37:271–281.CrossRefGoogle Scholar
  128. 128.
    van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen JJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218.CrossRefGoogle Scholar
  129. 129.
    Van Hook WA (1969) Isotope separation by gas chromatography. Adv Chem Ser 89:99–118.CrossRefGoogle Scholar
  130. 130.
    van Winden W, Schipper D, Verheijen P, Heijnen J (2001) Innovations in generation and analysis of 2D [13C, 1H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343.PubMedCrossRefGoogle Scholar
  131. 131.
    van Winden W, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: A new concept in flux analysis from 2D [13C, 1H] COSY NMR data. Biotechnol Bioeng 80:731–745.PubMedCrossRefGoogle Scholar
  132. 132.
    van Winden WA, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479.PubMedCrossRefGoogle Scholar
  133. 133.
    van Winden WA, van Dam, JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113–7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5:559–568.PubMedCrossRefGoogle Scholar
  134. 134.
    Vandenheuvel WJA, Cohen JS (1970) Gas-liquid chromatography-mass spectrometry of C-13 enriched amino acids as trimethylsilyl derivatives. Biochim Biophys Acta 208:251–259.PubMedGoogle Scholar
  135. 135.
    Vandenheuvel WJA, Smith JL, Putter I, Cohen JS (1970) Gas-liquid chromatography and mass spectrometry of deuterium-containing amino acids as their trimethylsilyl derivatives. J Chromatog 50:405–412.CrossRefGoogle Scholar
  136. 136.
    Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking and precursor relationships. Biotechnol Bioeng 259–268.Google Scholar
  137. 137.
    Wendisch VF, de Graaf AA, Sahm H (1997) Accurate determination of 13C enrichments in nonprotonated carbon atoms of isotopically enriched amino acids by 1H nuclear magnetic resonance. Anal Biochem 245:196–202.PubMedCrossRefGoogle Scholar
  138. 138.
    Wiechert W, Möllney M, Isermann N, Wurzel W, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85.PubMedCrossRefGoogle Scholar
  139. 139.
    Wiechert W, Möllney M,, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283.PubMedCrossRefGoogle Scholar
  140. 140.
    Willker W, Flögel U, Leibfritz D (1997) Ultra-high-resolved HSQC spectra of multiple 13C-labeled biofluids. J Magn Reson 125:216–219.PubMedCrossRefGoogle Scholar
  141. 141.
    Wilzbach KE, Riesz P (1957) Isotope effects in gas-liquid chromatography. Science 126:748–749.PubMedCrossRefGoogle Scholar
  142. 142.
    Wittmann C (2007) Fluxome analysis using GC-MS. Microbiol Cell Fact 6:Art. 6.Google Scholar
  143. 143.
    Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62:739–750.PubMedCrossRefGoogle Scholar
  144. 144.
    Wittmann C, Heinzle E (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum. Eur J Biochem 268:2441–2455.PubMedCrossRefGoogle Scholar
  145. 145.
    Wittmann C, Heinzle E (2001) MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol Bioeng 72:642–647.PubMedCrossRefGoogle Scholar
  146. 146.
    Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Met Eng 3:173–191.CrossRefGoogle Scholar
  147. 147.
    Wittmann C, Hans M, Heinzle E (2002) In vivo analysis of intracellular amino acid labelings by GC/MS. Anal Biochem 307:379–382.PubMedCrossRefGoogle Scholar
  148. 148.
    Wu ZP (2004) Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time-of-flight mass spectrometry. Eur J Mass Spectrom 10:619–623.CrossRefGoogle Scholar
  149. 149.
    Yang C, Hua Q, Shimizu K (2002) Quantitative analysis of intracellular metabolic fluxes using GC-MS and two dimensional NMR spectroscopy. J Biosci Bioeng 93:78–87.PubMedGoogle Scholar
  150. 150.
    Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope dilution from 13C-labeled glucose. Metab Eng 4:202–216.PubMedCrossRefGoogle Scholar
  151. 151.
    Yazdi-Samadi B, Rinne RW, Seif RD, (1977) Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron J 69:481–486.CrossRefGoogle Scholar
  152. 152.
    Zamboni N, Fischer E, Sauer U (2005) Fiat Flux: a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D.K. Allen
    • 1
  • R.G. Ratcliffe
    • 2
  1. 1.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  2. 2.Department of Plant SciencesUniversity of OxfordSouth Parks RoadUK

Personalised recommendations