Kinetic Properties of Metabolic Networks

  • Jörg Schwender

As seen in Chapters 8–10, models of cell metabolism based on steady-state stoichiometric network simulation have been applied successfully to study plant metabolism. However, such models deliver static views of metabolism and do, therefore, not capture the dynamic behavior of metabolic networks. In addition to reaction stoichiometry, kinetic simulation of metabolic networks considers the concentration of metabolites and enzymes, as well as the kinetic properties of enzymes. Kinetic models can be characterized and interrogated, for example, to predict the effect of changes in enzyme activities, in order to identify possible targets for the re-design of metabolism, which is of central importance for biotechnology.


Sugar Cane Metabolic Network Cell Wall Synthesis Differential Equation System System Biology Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown GC, Hafner RP, Brand, MD (1990) A “top-down” approach to the determination of control coefficients by metabolic control theory. Eur J Biochem 188:321–325.PubMedCrossRefGoogle Scholar
  2. 2.
    Farquhar, GD, von Caemmerer, C, Berry, JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.CrossRefGoogle Scholar
  3. 3.
    Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700.PubMedCrossRefGoogle Scholar
  4. 4.
    Fell DA (1997) Understanding the Control of Metabolism. Portland Press, London.Google Scholar
  5. 5.
    Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640.PubMedCrossRefGoogle Scholar
  6. 6.
    Fridlyand LE, Scheibe R (2000) Regulation in metabolic systems under homeostatic flux control. Arch Biochem Biophys 374:198–206.PubMedCrossRefGoogle Scholar
  7. 7.
    Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27: 655–673.CrossRefGoogle Scholar
  8. 8.
    Gerhardt R, Stitt M, Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Plant Physiol 83:399–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Heijnen JJ, van Gulik WM, Shimizu H, Stephanopoulos G (2004) Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data. Metabol Eng 6:391–400.CrossRefGoogle Scholar
  10. 10.
    Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545.PubMedCrossRefGoogle Scholar
  11. 11.
    Heinrich R, Rapoport RA (1974) A linear steady-state treatment of enzymatic chains. general properties, control and effector strength. Eur. J. Biochem. 42:89–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Chapman & Hall, New York.Google Scholar
  13. 13.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22:3067–3074.PubMedCrossRefGoogle Scholar
  14. 14.
    Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104.PubMedGoogle Scholar
  15. 15.
    King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60:1375–1378.CrossRefGoogle Scholar
  16. 16.
    Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883.PubMedCrossRefGoogle Scholar
  17. 17.
    Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8:70–75.PubMedCrossRefGoogle Scholar
  18. 18.
    Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452.PubMedCrossRefGoogle Scholar
  19. 19.
    Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144.PubMedCrossRefGoogle Scholar
  21. 21.
    Olivier BG, Rohwer JM, Hofmeyr JHS (2005) Modelling cellular systems with PySCeS. Bioinformatics 21:560–561.PubMedCrossRefGoogle Scholar
  22. 22.
    Pettersson G, Ryde-Pettersson U (1988) A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem 175:661–672.PubMedCrossRefGoogle Scholar
  23. 23.
    Pettersson G, Ryde-Pettersson U (1989) On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle. Eur J Biochem 182:373–377.PubMedCrossRefGoogle Scholar
  24. 24.
    Poolman MG, Fell DA, Thomas S (2000) Modelling photosynthesis and its control. J Exp Bot 51:319–328.PubMedCrossRefGoogle Scholar
  25. 25.
    Poolman MG, Olçer H, Lloyd JC, Raines CA, Fell DA (2001) Computer modelling and experimental evidence for two steady states in the photosynthetic Calvin cycle. Eur J Biochem 268:2810–2816.PubMedCrossRefGoogle Scholar
  26. 26.
    Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75: 1–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramli US, Salas JJ, Quant PA, Harwood JL (2002) Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem J 364:393–401.PubMedCrossRefGoogle Scholar
  28. 28.
    Ramli US, Salas JJ, Quant PA, Harwood JL (2005) Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 272:5764–5770.PubMedCrossRefGoogle Scholar
  29. 29.
    ap Rees T, Hill SA (1994) Metabolic control analysis of plant metabolism. Plant Cell Environ 17:587–599.CrossRefGoogle Scholar
  30. 30.
    Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374.PubMedCrossRefGoogle Scholar
  31. 31.
    Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445.PubMedCrossRefGoogle Scholar
  32. 32.
    Savageau MA. 1976. Biochemical system analysis. Addison- Wesley Publishing Company, Reading, MA.Google Scholar
  33. 33.
    Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17: 53–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur J Biochem 213: 613–624.PubMedCrossRefGoogle Scholar
  35. 35.
    Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur J Biochem 213:625–640.PubMedCrossRefGoogle Scholar
  36. 36.
    Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant-tissues by ADP glucose pyrophosphorylase. Science 258:287–292.PubMedCrossRefGoogle Scholar
  37. 37.
    Simpson TW, Shimizu H, Stephanopoulos G (1998) Experimental determination of group flux control coefficients in metabolic networks. Biotechnol Bioeng 58:149–153.PubMedCrossRefGoogle Scholar
  38. 38.
    Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681.PubMedCrossRefGoogle Scholar
  39. 39.
    Stephanopoulos G, Simpson TW (1997) Flux amplification in complex metabolic networks. Chem Eng Sci 52:2607–2627.CrossRefGoogle Scholar
  40. 40.
    Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA 1998.Google Scholar
  41. 41.
    Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329.PubMedCrossRefGoogle Scholar
  42. 42.
    Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. Biotechnol Bioeng 55:305–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Tjaden J, Möhlmann T, Kampfenkel K, Henrichs G, Neuhaus E (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16:531–540.CrossRefGoogle Scholar
  44. 44.
    Uys L, Botha FC, Hofmeyr JH, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392.PubMedCrossRefGoogle Scholar
  45. 45.
    Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555.PubMedGoogle Scholar
  46. 46.
    Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic redesign of a branched pathway using lin-log kinetics. Metabol Eng 5:164–176.CrossRefGoogle Scholar
  47. 47.
    Voit EO (2000) Computational analysis of biochemical systems. A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, Cambridge.Google Scholar
  48. 48.
    Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145: 513–526.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jörg Schwender
    • 1
  1. 1.Brookhaven National LaboratoryBiology DepartmentUptonUSA

Personalised recommendations