Deformation Behavior of Nanoporous Metals

  • Juergen Biener
  • A.V. Hamza
  • A.M. Hodge

6.1 Introduction

Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity ≥ 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical, and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. This size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances [1] to length scale effects in plasticity [2, 3].

In this chapter, we focus on the mechanical properties of low-density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will...


Metal Foam Indentation Size Effect Nanoporous Gold Cellular Solid Bimodal Pore Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors would like to acknowledge Beat Münch, Philippe Gasser, Lorenz Holzer, Craig Akaba, Greg Nyce, Jeffrey Kysar, Luis Zepeda-Ruiz, Babak Sadigh, and Arne Wittstock for providing original figures.


  1. 1.
    1. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer, New YorkGoogle Scholar
  2. 2.
    2. Arzt E (1998) Acta Mater. 46:5611CrossRefGoogle Scholar
  3. 3.
    3. Sieradzki K, Rinaldi A, Friesen C, Peralta P (2006) Acta Mater. 54:4533CrossRefGoogle Scholar
  4. 4.
    4. Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge, UKGoogle Scholar
  5. 5.
    5. Liu Z, Searson PC (2006) J. Phys. Chem. B 110:4318CrossRefGoogle Scholar
  6. 6.
    6. Yoo SH, Park S (2007) Adv. Mater. 19:1612CrossRefGoogle Scholar
  7. 7.
    7. Ding Y, Kim YJ, Erlebacher J (2004) Adv. Mater. 16:1897CrossRefGoogle Scholar
  8. 8.
    8. Parida S, Kramer D, Volkert CA, Rosner H, Erlebacher J, Weissmuller J (2006) Phys. Rev. Lett. 97:035504CrossRefGoogle Scholar
  9. 9.
    9. Hodge AM, Hayes JR, Caro JA, Biener J, Hamza AV (2006) Adv. Eng. Mater. 8:853CrossRefGoogle Scholar
  10. 10.
    10. Newman RC, Corcoran SG, Erlebacher J, Aziz MJ, Sieradzki K (1999) MRS. Bull. 24:24Google Scholar
  11. 11.
    11. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450CrossRefGoogle Scholar
  12. 12.
    12. Tulimieri DJ, Yoon J, Chan MHW (1999) Phys. Rev. Lett. 82:121CrossRefGoogle Scholar
  13. 13.
    13. Cortie MB, Maaroof AI, Stokes N, Mortari A (2007) Aust. J. Chem. 60:524CrossRefGoogle Scholar
  14. 14.
    14. Hayes JR, Hodge AM, Biener J, Hamza AV, Sieradzki K (2006) J. Mater. Res. 21:2611CrossRefGoogle Scholar
  15. 15.
    15. Pugh DV, Dursun A, Corcoran SG (2003) J. Mater. Res. 18:216CrossRefGoogle Scholar
  16. 16.
    16. Zhu JZ, Seker E, Bart-Smith H, Begley MR, Kelly RG, Zangari G, Lye WK, Reed ML (2006) Appl. Phys. Lett. 89:133104CrossRefGoogle Scholar
  17. 17.
    17. Dixon MC, Daniel TA, Hieda M, Smilgies DM, Chan MHW, Allara DL (2007) Langmuir 23:2414CrossRefGoogle Scholar
  18. 18.
    18. Li R, Sieradzki K (1992) Phys. Rev. Lett. 68:1168CrossRefGoogle Scholar
  19. 19.
    19. Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Appl. Phys. Lett. 89:053102CrossRefGoogle Scholar
  20. 20.
    20. Qian LH, Chen MW (2007) Appl. Phys. Lett. 91:083105CrossRefGoogle Scholar
  21. 21.
    21. Hodge AM, Biener J, Hayes JR, Bythrow PM, Volkert CA, Hamza AV (2007) Acta Mater. 55:1343CrossRefGoogle Scholar
  22. 22.
    22. Ding Y, Erlebacher J (2003) J. Am. Chem. Soc. 125:7772CrossRefGoogle Scholar
  23. 23.
    23. Nyce GW, Hayes JR, Hamza AV, Satcher JH (2007) Chem. Mater. 19:344CrossRefGoogle Scholar
  24. 24.
    24. Hayes JR, Nyce GW, Kuntz JD, Satcher JH, Hamza AV (2007) Nanotechnology 18:275602CrossRefGoogle Scholar
  25. 25.
    25. Callister WD (2003) Materials Science and Engineering: An Introduction. Wiley, New YorkGoogle Scholar
  26. 26.
    26. Motz C, Pippan R (2001) Acta Mater. 49:2463CrossRefGoogle Scholar
  27. 27.
    27. Olurin OB, Fleck NA, Ashby MF (2000) Mater. Sci. Eng. A 291:136CrossRefGoogle Scholar
  28. 28.
    28. Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Int. J. Mech. Sci. 43:701CrossRefGoogle Scholar
  29. 29.
    29. Liu Z, Chuah CSL, Scanlon MG (2003) Acta Mater. 51:365CrossRefGoogle Scholar
  30. 30.
    30. Wilsea M, Johnson KL, Ashby MF (1975) Int. J. Mech. Sci. 17:457CrossRefGoogle Scholar
  31. 31.
    31. Toivola Y, Stein A, Cook RF (2004) J. Mater. Res. 19:260CrossRefGoogle Scholar
  32. 32.
    32. Ramamurty U, Kumaran MC (2004) Acta Mater. 52:181CrossRefGoogle Scholar
  33. 33.
    33. Biener J, Hodge AM, Hamza AV, Hsiung LM, Satcher JH (2005) J. Appl. Phys. 97:024301CrossRefGoogle Scholar
  34. 34.
    34. Hakamada M, Mabuchi M (2007) Scr. Mater. 56:1003CrossRefGoogle Scholar
  35. 35.
    35. Lee D, Wei X, Chen X, Zhao M, Jun SC, Hone J, Herbert EG, Oliver WC, Kysar JW (2007) Scr. Mater. 56:437CrossRefGoogle Scholar
  36. 36.
    36. Volkert CA, Lilleodden ET, Kramer D, Weissmuller J (2006) Appl. Phys. Lett. 89:061920CrossRefGoogle Scholar
  37. 37.
    37. Biener J, Hodge AM, Hayes JR, Volkert CA, Zepeda-Ruiz LA, Hamza AV, Abraham FF (2006) Nano Lett. 6:2379CrossRefGoogle Scholar
  38. 38.
    38. Seker E, Gaskins JT, Bart-Smith H, Zhu J, Reed ML, Zangari G, Kelly R, Begley MR (2007) Acta Mater. 55:4593CrossRefGoogle Scholar
  39. 39.
    39. Lee D, Wei XD, Zhao MH, Chen X, Jun SC, Hone J, Kysar JW (2007) Model. Simul. Mater. Sci. Eng. 15:S181CrossRefGoogle Scholar
  40. 40.
    40. Mathur A, Erlebacher J (2007) Appl. Phys. Lett. 90:061910CrossRefGoogle Scholar
  41. 41.
    41. Volkert CA, Lilleodden ET (2006) Philos. Mag. 86:5567CrossRefGoogle Scholar
  42. 42.
    42. Davis JR (1998) Metals Handbook. ASM International, Materials ParkGoogle Scholar
  43. 43.
    43. Yamada Y, Wen C, Shimojima K, Mabuchi M, Nakamura M, Asahina T, Aizawa T, Higashi K (2000) Mater. Trans. JIM 41:1136Google Scholar
  44. 44.
    44. Nieh TG, Higashi K, Wadsworth J (2000) Mater. Sci. Eng. A 283:105CrossRefGoogle Scholar
  45. 45.
    45. Greer JR, Oliver WC, Nix WD (2005) Acta Mater. 53:1821CrossRefGoogle Scholar
  46. 46.
    46. Greer JR, Nix WD (2005) Appl. Phys. A Mater. Sci. Process. 80:1625CrossRefGoogle Scholar
  47. 47.
    47. Wu B, Heidelberg A, Boland JJ (2005) Nat. Mater. 4:525CrossRefGoogle Scholar
  48. 48.
    48. Koh SJA, Lee HP (2006) Nanotechnology 17:3451CrossRefGoogle Scholar
  49. 49.
    49. Zepeda-Ruiz LA, Sadigh B, Biener J, Hodge AM, Hamza AV (2007) Appl. Phys. Lett. 91:101907CrossRefGoogle Scholar
  50. 50.
    50. Sun Y, Ye J, Shan Z, Minor AM, Balk TJ (2007) JOM 59:54CrossRefGoogle Scholar
  51. 51.
    51. Hodge AM, Biener J, Hsiung LL, Wang YM, Hamza AV, Satcher Jr JH (2005) J. Mater. Res. 20:554CrossRefGoogle Scholar
  52. 52.
    52. Tanimoto H, Fujita H, Mizubayashi H, Sasaki Y, Kita E, Okuda S (1996) Mater. Sci. Eng. A 217:108CrossRefGoogle Scholar
  53. 53.
    53. Diao JK, Gall K, Dunn ML (2004) J. Mech. Phys. Sol. 52:1935CrossRefGoogle Scholar
  54. 54.
    54. Zhou LG, Huang HC (2004) Appl. Phys. Lett. 84:1940CrossRefGoogle Scholar
  55. 55.
    55. Senior NA, Newman RC (2006) Nanotechnology 17:2311CrossRefGoogle Scholar
  56. 56.
    Doucette R, Biener M, Biener J, Cervantes O, Hamza AV, Hodge AM (2008) Scr. Mater. (to be submitted)Google Scholar
  57. 57.
    57. Wu HA (2006) Mech. Res. Commun. 33:9CrossRefGoogle Scholar
  58. 58.
    58. Biener J, Hodge AM, Hamza AV (2005) Appl. Phys. Lett. 87:121908CrossRefGoogle Scholar
  59. 59.
    59. Friedersdorf F, Sieradzki K (1996) Corrosion 52:331CrossRefGoogle Scholar
  60. 60.
    60. Sieradzki K, Newman RC (1985) Philos. Mag. A 51:95CrossRefGoogle Scholar
  61. 61.
    61. Kelly RG, Frost AJ, Shahrabi T, Newman RC (1991) Metall. Trans. A 22:531CrossRefGoogle Scholar
  62. 62.
    62. Meinel K, Klaua M, Bethge H (1988) Phys. Stat. Sol. A 106:133CrossRefGoogle Scholar
  63. 63.
    63. Celarie F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marliere C (2003) Phys. Rev. Lett. 90:075504CrossRefGoogle Scholar
  64. 64.
    64. Duxbury PM, Leath PL, Beale PD (1987) Phys. Rev. B 36:367CrossRefGoogle Scholar
  65. 65.
    65. Kahng B, Batrouni GG, Redner S, de Arcangelis L, Herrmann HJ (1988) Phys. Rev. B 37:7625CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Nanoscale Synthesis and Characterization LaboratoryLawrence Livermore National LaboratoryLivermoreUS
  2. 2.Aerospace and Mechanical Engineering DepartmentUniversity of Southern CaliforniaLos Angeles

Personalised recommendations