Advertisement

Nanomechanical Characterization of One-Dimensional Nanostructures

  • Yousheng Zhang
  • Eunice Phay Shing Tan
  • Chorng Haur Sow
  • Chwee Teck Lim
Chapter

5.1 Introduction

One-dimensional (1D) nanostructures belong to an important class of nanomaterials. Since the discovery of carbon nanotubes by Iijima in 1991 [1], 1D nanostructures such as nanotubes [2], nanowires [3], nanorods [4, 5], nanobelts [6], nanoribbons [7], and nanofibers [8] have been synthesized and widely investigated. Studies have shown that these nanostructures possess not only unique electrical, thermal, and optical properties, but also outstanding mechanical properties [9, 10]. Nanomechanical characterization of 1D nanostructures is so important that it will determine their applications in nanotechnology such as nanoresonators [11], biological sensors [12], nanocantilever [13], piezoelectric nanogenerators [14], nanoelectromechanical systems (NEMS), and tissue engineered scaffolds [15, 16]. It is of great importance to measure the mechanical properties directly from these nanostructures since the properties might have size-dependent behavior at the nanometer length...

Keywords

Atomic Force Microscope Atomic Force Microscope Cantilever Cantilever Deflection Nanometer Length Scale Lateral Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1. Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    2. Goldberger J, He RR, Zhang YF, Lee SW, Yan HQ, Choi HJ, Yang PD (2003) Nature 422:599CrossRefGoogle Scholar
  3. 3.
    3. Sun YG, Gates B, Mayers B, Xia YN (2002) Nano Lett. 2:165CrossRefGoogle Scholar
  4. 4.
    4. Zhang DF, Sun LD, Yin JL, Yan CH (2003) Adv. Mater. 15:1022CrossRefGoogle Scholar
  5. 5.
    5. Yang PD, Lieber CM (1996) Science 273:1836CrossRefGoogle Scholar
  6. 6.
    6. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  7. 7.
    7. Shi WS, Peng HY, Wang N, Li CP, Xu L, Lee CS, Kalish R, Lee ST (2001) J. Am. Chem. Soc. 123:11095CrossRefGoogle Scholar
  8. 8.
    8. Li D, Xia YN (2004) Adv. Mater. 16:1151CrossRefGoogle Scholar
  9. 9.
    9. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv. Mater. 15:353CrossRefGoogle Scholar
  10. 10.
    10. Kuchibhatla S, Karakoti AS, Bera D, Seal S (2007) Prog. Mater. Sci. 52:699CrossRefGoogle Scholar
  11. 11.
    11. Husain A, Hone J, Postma HWC, Huang XMH, Drake T, Barbic M, Scherer A, Roukes ML (2003) Appl. Phys. Lett. 83:1240CrossRefGoogle Scholar
  12. 12.
    12. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289CrossRefGoogle Scholar
  13. 13.
    13. Hughes WL, Wang ZL (2003) Appl. Phys. Lett. 82:2886CrossRefGoogle Scholar
  14. 14.
    14. Wang ZL, Song JH (2006) Science 312:242CrossRefGoogle Scholar
  15. 15.
    15. Zhang YZ, Lim CT, Ramakrishna S, Huang ZM (2005) J. Mater. Sci. Mater. Med. 16:933CrossRefGoogle Scholar
  16. 16.
    16. Tan EPS, Lim CT (2006) J. Biomed. Mater. Res. A 77A:526CrossRefGoogle Scholar
  17. 17.
    17. Desai AV, Haque MA (2007) Sens. Actuators A Phys. 134:169CrossRefGoogle Scholar
  18. 18.
    18. Hoffmann S, Ostlund F, Michler J, Fan HJ, Zacharias M, Christiansen SH, Ballif C (2007) Nanotechnology 18:205503CrossRefGoogle Scholar
  19. 19.
    19. Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Phys. Rev. Lett. 96:075505CrossRefGoogle Scholar
  20. 20.
    20. Young SJ, Ji LW, Chang SJ, Fang TH, Hsueh TJ, Meen TH, Chen IC (2007) Nanotechnology 18:225603CrossRefGoogle Scholar
  21. 21.
    21. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Appl. Mech. Rev. 55:495CrossRefGoogle Scholar
  22. 22.
    22. Williams PA, Papadakis SJ, Falvo MR, Patel AM, Sinclair M, Seeger A, Helser A, Taylor RM, Washburn S, Superfine R (2002) Appl. Phys. Lett. 80:2574CrossRefGoogle Scholar
  23. 23.
    23. Cumings J, Zettl A (2000) Science 289:602CrossRefGoogle Scholar
  24. 24.
    24. Zhu Y, Espinosa HD (2005) Proc. Natl. Acad. Sci. USA 102:14503CrossRefGoogle Scholar
  25. 25.
    25. Zhu Y, Ke C, Espinosa HD (2007) Exp. Mech. 47:7CrossRefGoogle Scholar
  26. 26.
    26. Cuenot S, Demoustier-Champagne S, Nysten B (2000) Phys. Rev. Lett. 85:1690CrossRefGoogle Scholar
  27. 27.
    27. Tan EPS, Lim CT (2006) Compos. Sci. Technol. 66:1102CrossRefGoogle Scholar
  28. 28.
    28. Ni H, Li XD, Gao HS (2006) Appl. Phys. Lett. 88:043108CrossRefGoogle Scholar
  29. 29.
    29. Chen YX, Dorgan BL, McIlroy DN, Aston DE (2006) J. Appl. Phys. 100:104301CrossRefGoogle Scholar
  30. 30.
    30. Mai WJ, Wang ZL (2006) Appl. Phys. Lett. 89:073112CrossRefGoogle Scholar
  31. 31.
    31. Xiong QH, Duarte N, Tadigadapa S, Eklund PC (2006) Nano Lett. 6:1904CrossRefGoogle Scholar
  32. 32.
    32. Ugural A (1993) Mechanics of Materials. McGraw-Hill, New York, p. 152Google Scholar
  33. 33.
    33. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  34. 34.
    34. Song JH, Wang XD, Riedo E, Wang ZL (2005) Nano Lett. 5:1954CrossRefGoogle Scholar
  35. 35.
    35. Wu B, Heidelberg A, Boland JJ (2005) Nat. Mater. 4:525CrossRefGoogle Scholar
  36. 36.
    36. Heidelberg A, Ngo LT, Wu B, Phillips MA, Sharma S, Kamins TI, Sader JE, Boland JJ (2006) Nano Lett. 6:1101CrossRefGoogle Scholar
  37. 37.
    37. Li XD, Hao HS, Murphy CJ, Caswell KK (2003) Nano Lett. 3:1495CrossRefGoogle Scholar
  38. 38.
    38. Ni H, Li XO (2006) Nanotechnology 17:3591CrossRefGoogle Scholar
  39. 39.
    39. Feng G, Nix WD, Yoon Y, Lee CJ (2006) J. Appl. Phys. 99:074304CrossRefGoogle Scholar
  40. 40.
    40. Tan EPS, Lim CT (2005) Appl. Phys. Lett. 87:123106CrossRefGoogle Scholar
  41. 41.
    41. Oliver WC, Pharr GM (1992) J. Mater. Res. 7:1564CrossRefGoogle Scholar
  42. 42.
    42. Sneddon IN (1965) Int. J. Eng. Sci. 3:47CrossRefGoogle Scholar
  43. 43.
    43. Pharr GM (1998) Mater. Sci. Eng. A Struct. Mater. 253:151CrossRefGoogle Scholar
  44. 44.
    44. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Science 283:1513CrossRefGoogle Scholar
  45. 45.
    45. Yu MF, Wagner GJ, Ruoff RS, Dyer MJ (2002) Phys. Rev. B 66:073406CrossRefGoogle Scholar
  46. 46.
    46. Dikin DA, Chen X, Ding W, Wagner G, Ruoff RS (2003) J. Appl. Phys. 93:226CrossRefGoogle Scholar
  47. 47.
    47. Zhou J, Lao CS, Gao PX, Mai WJ, Hughes WL, Deng SZ, Xu NS, Wang ZL (2006) Solid State Commun. 139:222CrossRefGoogle Scholar
  48. 48.
    48. Wang ZL, Gao RP, Pan ZW, Dai ZR (2001) Adv. Eng. Mater. 3:657CrossRefGoogle Scholar
  49. 49.
    49. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637CrossRefGoogle Scholar
  50. 50.
    50. Tan EPS, Lim CT (2004) Rev. Sci. Instrum. 75:2581CrossRefGoogle Scholar
  51. 51.
    51. Tan EPS, Ng SY, Lim CT (2005) Biomaterials 26:1453CrossRefGoogle Scholar
  52. 52.
    52. Ding WQ, Calabri L, Chen XQ, Kohhaas KM, Ruoff RS (2006) Compos. Sci. Technol. 66:1112CrossRefGoogle Scholar
  53. 53.
    53. Ding W, Dikin DA, Chen X, Piner RD, Ruoff RS, Zussman E, Wang X, Li X (2005) J. Appl. Phys. 98:014905CrossRefGoogle Scholar
  54. 54.
    54. Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2006) Proc. Natl. Acad. Sci. USA 103:523CrossRefGoogle Scholar
  55. 55.
    55. Timoshenko SP, Gere JM (1961) Theory of Elastic Stability. McGraw-Hill, New YorkGoogle Scholar
  56. 56.
    56. Kaplan-Ashiri I, Cohen SR, Gartsman K, Rosentsveig R, Seifert G, Tenne R (2004) J. Mater. Res. 19:454CrossRefGoogle Scholar
  57. 57.
    57. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2003) J. Appl. Phys. 93:5650CrossRefGoogle Scholar
  58. 58.
    58. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2004) Phys. Rev. B 69:165410CrossRefGoogle Scholar
  59. 59.
    59. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Appl. Phys. Lett. 77:1399CrossRefGoogle Scholar
  60. 60.
    60. Chen XQ, Saito T, Yamada H, Matsushige K (2001) Appl. Phys. Lett. 78:3714CrossRefGoogle Scholar
  61. 61.
    61. Rao SG, Huang L, Setyawan W, Hong SH (2003) Nature 425:36CrossRefGoogle Scholar
  62. 62.
    62. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Nature 395:878CrossRefGoogle Scholar
  63. 63.
    63. He RR, Gao D, Fan R, Hochbaum AI, Carraro C, Maboudian R, Yang PD (2005) Adv. Mater. 17:2098CrossRefGoogle Scholar
  64. 64.
    64. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Phys. Rev. B 73:235409CrossRefGoogle Scholar
  65. 65.
    65. Ni H, Li XD, Cheng GS, Klie R (2006) J. Mater. Res. 21:2882CrossRefGoogle Scholar
  66. 66.
    66. Tabib-Azar M, Nassirou M, Wang R, Sharma S, Kamins TI, Islam MS, Williams RS (2005) Appl. Phys. Lett. 87:113102CrossRefGoogle Scholar
  67. 67.
    67. Li XD, Wang XN, Xiong QH, Eklund PC (2005) Nano Lett. 5:1982CrossRefGoogle Scholar
  68. 68.
    68. Yu MF, Atashbar MZ, Chen XL (2005) IEEE Sens. J. 5:20CrossRefGoogle Scholar
  69. 69.
    69. Huang YH, Bai XD, Zhang Y (2006) J. Phys. Condens. Matter 18:L179CrossRefGoogle Scholar
  70. 70.
    70. Calabri L, Pugno N, Ding W, Ruoff RS (2006) J. Phys. Condens. Matter 18:S2175CrossRefGoogle Scholar
  71. 71.
    71. Liu KH, Wang WL, Xu Z, Liao L, Bai XD, Wang EG (2006) Appl. Phys. Lett. 89:221908CrossRefGoogle Scholar
  72. 72.
    72. Wang ZL, Dai ZR, Gao RP, Gole JL (2002) J. Electron Microsc. 51:S79CrossRefGoogle Scholar
  73. 73.
    73. Nam CY, Jaroenapibal P, Tham D, Luzzi DE, Evoy S, Fischer JE (2006) Nano Lett. 6:153CrossRefGoogle Scholar
  74. 74.
    74. Chen XQ, Zhang SL, Wagner GJ, Ding WQ, Ruoff RS (2004) J. Appl. Phys. 95:4823CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yousheng Zhang
    • 1
  • Eunice Phay Shing Tan
    • 2
  • Chorng Haur Sow
    • 3
  • Chwee Teck Lim
    • 4
  1. 1. Nanoscience and Nanotechnology InitiativeNational University of SingaporeSingapore
  2. 2.Division of BioengineeringNational University of SingaporeSingapore
  3. 3.Nanoscience and Nanotechnology Initiative, Department of Physics, Blk S12, Faculty of ScienceNational University of SingaporeSingapore
  4. 4.Nanoscience and Nanotechnology Initiative, Division of Bioengineering, Department of Mechanical EngineeringNational University of SingaporeSingapore

Personalised recommendations