Advertisement

Adhesive Contact of Solid Surfaces

  • Fuqian Yang
Chapter

4.1 Introduction

The rapid progress in micro- and nanofabrication techniques over the last several decades has led to the development of various miniature electromechanical systems, such as microvibromotors [1], MEMS RF switches [2, 3], MEMS optical tweezers [4, 5], and MEMS mirrors [6, 7]. These have attracted great interest in using movable micromechanical structures in various MEMS and NEMS devices. The performance and lifetime of MEMS and NEMS devices are limited by the material confinement in submicron structures with large surface area, high electric field, large stress gradient, and other factors normally nonexistent in macroscale structures. On the microscale, material behavior is more controlled by surface-driving effects than by bulk effects. For example, frictional effects play a much more important role than inertia in the control of rotary or linear micromotors; i.e., the start-up conditions strongly depend on static friction and moving/rotational speed on kinetic...

Keywords

Interfacial Strength Indentation Load Interfacial Shear Strength Contact Radius Normal Contact Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work is supported by the National Science Foundation under Grant No. CMS-0508989.

References

  1. 1.
    1. Mehregany M, Gabriel KJ, Trimmer WSN (1988) IEEE Trans. Electron Devices 35:719CrossRefGoogle Scholar
  2. 2.
    2. Muldavin JB, Rebeiz GM (2001) IEEE Microw. Wireless Comp. Lett. 11:334.CrossRefGoogle Scholar
  3. 3.
    3. Jensen BD, Huang KW, Chow LL-W, Kurabayashi K (2005) Appl. Phys. Lett. 97:103535Google Scholar
  4. 4.
    4. Ashkin A (1997) Proc. Natl. Acad. Sci. USA 94:4853CrossRefGoogle Scholar
  5. 5.
    5. Bechhoefer J, Wilson S (2002) Am. J. Phys. 70:393CrossRefGoogle Scholar
  6. 6.
    6. Zeng HJ, Wan ZL, Feinerman AD (2006) J. Microelectromech. Syst. 15:1568CrossRefGoogle Scholar
  7. 7.
    7. Joudrey K, Adams GG, McGruer NE (2006) J. Micromech. Microeng. 16:2618CrossRefGoogle Scholar
  8. 8.
    8. Maboudian R, Carraro C (2004) Phys. Chem. 54:35Google Scholar
  9. 9.
    9. Fan LS (1990) Integrated Micromachinery – Moving Structures in Silicon Chips, Ph.D. Thesis. University of California, BerkeleyGoogle Scholar
  10. 10.
    10. Fan LS, Tai YC, Muller RS (1989) Sens. Actuators A 20:41CrossRefGoogle Scholar
  11. 11.
    Sandeejas FSA, Apte RB, Banyai WC, Bloom DM (1993) In: Proc. 7th Int. Conf. on Solid-State Sensors and Actuators, Transducer 93, Yokohama, Japan. p. 6Google Scholar
  12. 12.
    12. Abe T, Messner WC, Reed L (1995) J. Microelectromech. Syst. 4:66CrossRefGoogle Scholar
  13. 13.
    Mulhern GT, Soane DS, Howe RT (1993) In: Proc. 7th Int. Conf. on Solid-State Sensors and Actuators, Transducer 93, Yokohama, Japan. p. 296Google Scholar
  14. 14.
    14. Guckel H, Sniegowki JJ, Christenson TR, Raissi F (1990) Sens. Actuators A 346:21Google Scholar
  15. 15.
    15. Komvopoulos K, Yan W (1997) J. Tribol. 119:391CrossRefGoogle Scholar
  16. 16.
    16. Bradley RS (1932) Philos. Mag. 13:853Google Scholar
  17. 17.
    17. Johnson KL, Kendall K, Roberts AD (1971) Proc. R. Soc. Lond. A 324:301CrossRefGoogle Scholar
  18. 18.
    18. Derjaguin BV, Müller VM, Toporov YP (1975) J. Colloid Interface Sci. 53:314CrossRefGoogle Scholar
  19. 19.
    19. Hertz H (1896) Miscellaneous Papers. Macmillan, London, p. 146Google Scholar
  20. 20.
    20. Li JCM (2001) Mater. Sci. Eng. A 317:197CrossRefGoogle Scholar
  21. 21.
    21. Tabor D (1977) J. Colloid Interface Sci. 58:1CrossRefGoogle Scholar
  22. 22.
    22. Müller VM, Yushchenko VS, Derjaguin BV (1980) J. Colloid Interface Sci. 77:91CrossRefGoogle Scholar
  23. 23.
    23. Maugis D (1992) J. Colloid Interface Sci. 150:243CrossRefGoogle Scholar
  24. 24.
    24. Dugdale DS (1960) J. Mech. Phys. Solids 8:100CrossRefGoogle Scholar
  25. 25.
    25. Yang FQ (2002) J. Phys. D Appl. Phys 35:2614CrossRefGoogle Scholar
  26. 26.
    26. Yang FQ (2006) Thin Solid Films 515:2274CrossRefGoogle Scholar
  27. 27.
    27. Lin YY, Chen HY (2006) J. Polym. Sci. B Polym. Phys. 44:2912CrossRefGoogle Scholar
  28. 28.
    28. Yang FQ, Li JCM (2001) Langmuir 17:6524CrossRefGoogle Scholar
  29. 29.
    29. Yang FQ (2003) J. Phys. D Appl. Phys. 36:50CrossRefGoogle Scholar
  30. 30.
    30. Yang FQ, Zhang XZ, Li JCM (2001) Langmuir 17:716CrossRefGoogle Scholar
  31. 31.
    31. Kendall K (1971) J. Phys. D Appl. Phys. 4:1186CrossRefGoogle Scholar
  32. 32.
    32. Yang FQ, Zhang XZ, Li JCM (2001) Mater. Res. Soc. Symp. Proc. 649:Q6.5.1Google Scholar
  33. 33.
    33. Chaudhury MK, Whiteside GM (1991) Langmuir 7:1013CrossRefGoogle Scholar
  34. 34.
    34. Van Krevelen DW (1976) Properties of Polymers: Their Estimation and Correlation with Chemical Structure. Elsevier, Amsterdam, p. 166Google Scholar
  35. 35.
    35. Yang FQ (2003) Mater. Sci. Eng. A 358:226CrossRefGoogle Scholar
  36. 36.
    36. Yang FQ (2006) Thin Solid Films 515:2274CrossRefGoogle Scholar
  37. 37.
    37. Johnson KL, Sridhar I (2001) J. Phys. D Appl. Phys. 34:683CrossRefGoogle Scholar
  38. 38.
    38. Sridhar I, Zheng ZW, Johnson KL (2004) J. Phys. D Appl. Phys. 37:2886CrossRefGoogle Scholar
  39. 39.
    39. Maugis D (1992) J. Colloid Interface Sci. 150:243CrossRefGoogle Scholar
  40. 40.
    40. Sergici AO, Adams GG, Müftü S (2006) J. Mech. Phys. Solids 54:1843CrossRefGoogle Scholar
  41. 41.
    41. Bahr DF, Robach JS, Wright JS, Francis LF, Gerberich WW (1999) Mater. Sci. Eng. A 259:126CrossRefGoogle Scholar
  42. 42.
    42. Diao DF, Kato K, Hokkirigawa K (1994) J. Tribol. 116:860CrossRefGoogle Scholar
  43. 43.
    43. Chiang SS, Marshall DB, Evans AG (1981) In: Pask JA, Evans AG (eds) Surface and Interfaces in Ceramic and Ceramic/Metal Systems. Plenum, New York, p. 603Google Scholar
  44. 44.
    44. Evans AG, Hutchinson JW (1984) Int. J. Solids Struct. 20:455CrossRefGoogle Scholar
  45. 45.
    45. Marshall DB, Evans AG (1984) J. Appl. Phys. 56:2632CrossRefGoogle Scholar
  46. 46.
    46. Kriese MD, Gerberich WW, Moody NR (1999) J. Mater. Res. 14:3007CrossRefGoogle Scholar
  47. 47.
    47. Huang B, Zhao MH, Zhang T-Y (2004) Philos. Mag. 84:1233CrossRefGoogle Scholar
  48. 48.
    48. Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) Surf. Coat. Technol. 99:171CrossRefGoogle Scholar
  49. 49.
    49. Bhattacharya AK, Nix WD (1988) Int. J. Solids Struct. 24:1287CrossRefGoogle Scholar
  50. 50.
    50. Dehm G, Rühle M, Conway HD, Raj R (1997) Acta Mater. 45:489CrossRefGoogle Scholar
  51. 51.
    51. Agrawal DC, Raj R (1989) Acta Metall. 37:1265CrossRefGoogle Scholar
  52. 52.
    52. Rossington C, Evans AG, Marshall, Khuri-Yakub (1984) J. Appl. Phys. 56:2639CrossRefGoogle Scholar
  53. 53.
    53. Fan QH, Fernandes A, Pereira E, Grácio (1999) Vacuum 52:163CrossRefGoogle Scholar
  54. 54.
    54. Kriese MD, Moody NR, Gerberich WW (1998) Acta Mater. 46:6623CrossRefGoogle Scholar
  55. 55.
    55. Lee A, Clemens BM, Nix WD (2004) Acta Mater. 52:2081CrossRefGoogle Scholar
  56. 56.
    56. Li M, Palacio ML, Carter CB, Gerberich WW (2002) Thin Solid Films 416:174CrossRefGoogle Scholar
  57. 57.
    57. Rosenfeld LG, Ritter JE, Lardner TJ, Lin MR (1990) J. Appl. Phys. 67:3291CrossRefGoogle Scholar
  58. 58.
    58. Lu Y, Shinozaki DM (2002) J. Mater. Sci. 37:1283CrossRefGoogle Scholar
  59. 59.
    59. Geng K, Yang FQ, Druffel T, Grulke EA (2007) Polymer 48:841CrossRefGoogle Scholar
  60. 60.
    60. Mastrangelo CH, Hsu CH (1992) In: Tech. Digest of 1992 Solid Sensor and Actuator Workshop, Hilton Head, SC, USA. p. 241.Google Scholar
  61. 61.
    61. Zhao Y-P, Wang LS, Yu TX (2003) J. Adhes. Sci. Technol. 17:519CrossRefGoogle Scholar
  62. 62.
    62. Yang FQ (2004) J. Micromech. Microeng. 14:263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexington

Personalised recommendations