Advertisement

Indentation in Shape Memory Alloys

  • Yang-Tse Cheng
  • David S. Grummon
Chapter

3.1 Introduction

Research on shape memory alloys (SMAs) has been broadly active since the discovery of shape memory in the compound NiTi in 1963, a decade after first reports of the effect in Au-Cd. For general reviews, see [1-4]. Early work on NiTi-based SMAs (primarily NiTi, and NiTiX, where X = Pt, Pd, Au, Cu, Hf, Zr, or Nb, and others) led to applications such as the NiTi hydraulic tube couplings developed by the Raychem Corporation. Today, a wide variety of new ideas have emerged [1-5] for applications such as sensors, actuators, damping materials, MEMS, biomedical devices, and hydro/aerodynamic control at surfaces. A noticeable resurgence of interest in SMAs has occurred, largely in response to recent advances in alloy preparation techniques (including physical vapor deposition routes), machining and joining technologies, and modeling capabilities.

It is well known that NiTi alloys can exhibit either the shape memory effect (SME) or the superelastic effect (SE, often called...

Keywords

Shape Memory Indentation Depth Shape Memory Effect Spherical Indentation Recovery Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank former Ph.D. students, Drs. Wangyang Ni and Yijun Zhang, for their contributions to some of the work reviewed in this chapter. We would also like to thank the U.S. National Science Foundation for partial support of this work under SGER Contract No. CMS0336810 and GOALI Contract No. CMS0510294.

References

  1. 1.
    1. Otsuka K, Wayman CM (1998) Shape Memory Alloys. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    2. Duerig T, Melton KN, Stockel D, Wayman CM (1990) Engineering Aspect of Shape Memory Alloys. Butterworth-heinemann, BostonGoogle Scholar
  3. 3.
    3. Otsuka K, Kakeshita T (2002) MRS Bull. 27:91CrossRefGoogle Scholar
  4. 4.
    4. Wayman CM (1993) MRS Bull. 18:49Google Scholar
  5. 5.
    5. Rice C (2002) In: Schwartz M (ed) Encyclopedia of Smart Materials. Wiley, New York, pp. 921–936Google Scholar
  6. 6.
    6. Wolf RH, Heuer AH (1995) J. Microelectromech. Syst. 4:206CrossRefGoogle Scholar
  7. 7.
    7. Liu R, Li DY, Xie YS, Llewellyn R, Hawthorne HM (1999) Scr. Mater. 41:691CrossRefGoogle Scholar
  8. 8.
    8. Cheng FT, Shi P, Man HC (2001) Scr. Mater. 45:1083CrossRefGoogle Scholar
  9. 9.
    9. Gall K, Juntunen K, Maier HJ, Sehitoglu H, Chumlyakov YI (2001) Acta Mater. 49:3205CrossRefGoogle Scholar
  10. 10.
    10. Ni WY, Cheng YT, Grummon DS (2002) Appl. Phys. Lett. 80:3310CrossRefGoogle Scholar
  11. 11.
    11. Ni WY, Cheng YT, Grummon DS (2003) Appl. Phys. Lett. 82:2811CrossRefGoogle Scholar
  12. 12.
    12. Shaw GA, Stone DS, Johnson AD, Ellis AB, Crone WC (2003) Appl. Phys. Lett. 83:257CrossRefGoogle Scholar
  13. 13.
    13. Ma XG, Komvopoulos K (2003) Appl. Phys. Lett. 83:3773CrossRefGoogle Scholar
  14. 14.
    14. Ma XG, Komvopoulos K (2004) Appl. Phys. Lett. 84:4274CrossRefGoogle Scholar
  15. 15.
    15. Qian LM, Xiao XD, Sun QP, Yu TX (2004) Appl. Phys. Lett. 84:1076CrossRefGoogle Scholar
  16. 16.
    16. Ni WY, Cheng YT, Grummon DS (2004) Surf. Coat. Technol. 177:512CrossRefGoogle Scholar
  17. 17.
    17. Liu C, Zhao YP, Sun QP, Yu TX, Cao ZX (2005) J. Mater. Sci. 40:1501CrossRefGoogle Scholar
  18. 18.
    18. Liu C, Zhao YP, Yu TX (2005) Mater. Des. 26:465CrossRefGoogle Scholar
  19. 19.
    19. Shaw GA, Trethewey JS, Johnson AD, Drugan WJ, Crone WC (2005) Adv. Mater. 17:1123CrossRefGoogle Scholar
  20. 20.
    20. Zhang YJ, Cheng YT, Grummon DS (2005) J. Appl. Phys. 98:033505CrossRefGoogle Scholar
  21. 21.
    21. Frick CP, Ortega AM, Tyber J, Maksound AEM, Maier HJ, Liu YN, Gall K (2005) Mater. Sci. Eng. A 405:34CrossRefGoogle Scholar
  22. 22.
    22. Huang WM, Su JF, Hong MH, Yang B (2005) Scr. Mater. 53:1055CrossRefGoogle Scholar
  23. 23.
    23. Komvopoulos K, Ma XG (2005) Appl. Phys. Lett. 87:263108CrossRefGoogle Scholar
  24. 24.
    24. Zhang YJ, Cheng YT, Grummon DS (2006) Appl. Phys. Lett. 88:131904CrossRefGoogle Scholar
  25. 25.
    25. Zhang YJ, Cheng YT, Grummon DS (2006) Appl. Phys. Lett. 89:041912CrossRefGoogle Scholar
  26. 26.
    26. Frick CP, Lang TW, Spark K, Gall K (2006) Acta Mater. 54:2223CrossRefGoogle Scholar
  27. 27.
    27. Zhang HS, Komvopoulos K (2006) J. Mater. Sci. 41:5021CrossRefGoogle Scholar
  28. 28.
    28. Wood AJM, Clyne TW (2006) Acta Mater. 54:5607CrossRefGoogle Scholar
  29. 29.
    29. Su JF, Huang WM, Hong MH (2007) Smart Mater. Struct. 16:S137CrossRefGoogle Scholar
  30. 30.
    30. Crone WC, Brock H, Creuziger A (2007) Exp. Mech. 47:133CrossRefGoogle Scholar
  31. 31.
    31. Zhang YJ, Cheng YT, Grummon DS (2007) J. Appl. Phys. 101:053507CrossRefGoogle Scholar
  32. 32.
    32. Zhang YJ, Cheng YT, Grummon DS (2007) J. Mater. Res. 22:2851CrossRefGoogle Scholar
  33. 33.
    33. Johnson KL (1987) Contact Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    34. Fischer-Cripps AC (2004) Nanoindentation, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  35. 35.
    35. Cheng YT, Cheng CM (2004) Mater. Sci. Eng. R Rep. 44:91CrossRefGoogle Scholar
  36. 36.
    36. Ni WY, Cheng YT, Grummon DS (2006) Surf. Coat. Technol. 201:1053CrossRefGoogle Scholar
  37. 37.
    37. Zhang YJ, Cheng YT, Grummon DS (2006) Mater. Sci. Eng. A 438:710CrossRefGoogle Scholar
  38. 38.
    38. Ni WY, Cheng YT, Lukitsch M, Weiner AM, Lev LC, Grummon DS (2005) Wear 259:842CrossRefGoogle Scholar
  39. 39.
    39. Ni WY, Cheng YT, Lukitsch MJ, Weiner AM, Lev LC, Grummon DS (2004) Appl. Phys. Lett. 85:4028CrossRefGoogle Scholar
  40. 40.
    40. Cheng FT, Shi P, Man HC (2004) Mater. Charact. 52:129CrossRefGoogle Scholar
  41. 41.
    41. Yan WY, Sun QP, Feng XQ, Qian LM (2007) Int. J. Solids Struct. 44:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials and Processes LaboratoryGeneral Motors R&D CenterMichiganUSA
  2. 2.Department of Chemical Engineering and Materials ScienceMichigan State UniversityMichiganUSA

Personalised recommendations