Advertisement

Size Effects in Nanoindentation

  • Xue Feng
  • Yonggang Huang
  • Keh-chih Hwang
Chapter

2.1 Introduction

Microindentation hardness experiments have repeatedly shown that the indentation hardness increases with the decrease of indentation depth, i.e., the smaller the harder [ 3, 5, 9, 31, 32, 38, 45, 53]. On the basis of the Taylor dislocation model [ 50, 51] and a model of geometrically necessary dislocations (GND) underneath an indenter tip shown in the inset of Fig. 2.1, Nix and Gao established the relation between the microindentation hardness H and the indentation depth h
$$\left( \frac{H}{H_0} \right)^2 = 1 + \frac{h^\ast}{h},$$

Keywords

Indentation Depth Indentation Hardness Spherical Indenter Strain Gradient Plasticity Conical Indenter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Y.H. acknowledges the support from NSF (grant CMS-0084980) and ONR (grant N00014-01-1-0205, program officer Dr. Y.D.S. Rajapakse). The support from NSFC is also acknowledged. Y.H and WDN acknowledge the support from an NSF-NIRT project “Mechanism Based Modeling and Simulation in Nanomechanics,” through grant No. NSF CMS-0103257, under the direction of Dr. Ken Chong. Research at the ORNL SHaRE User Facility (GMP) was sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

References

  1. 1.
    1. Arsenlis A, Parks DM (1999) Acta Mater. 47:1597CrossRefGoogle Scholar
  2. 2.
    2. Ashby MF (1970) Philos. Mag. 21:399CrossRefGoogle Scholar
  3. 3.
    3. Atkinson M (1995) J. Mater. Res. 10:2908CrossRefGoogle Scholar
  4. 4.
    4. Bailey JE, Hirsch PB (1960) Philos. Mag. 5:485CrossRefGoogle Scholar
  5. 5.
    5. Begley MR, Hutchinson JW (1998) J. Mech. Phys. Solids 46:2049CrossRefGoogle Scholar
  6. 6.
    6. Bishop JFW, Hill R (1951) Philos. Mag. 42:414Google Scholar
  7. 7.
    7. Bishop JFW, Hill R (1951) Philos. Mag. 42:1298Google Scholar
  8. 8.
    8. Cottrell AH (1964) The Mechanical Properties of Materials. Wiley, New YorkGoogle Scholar
  9. 9.
    9. De Guzman MS, Neubauer G, Flinn P, Nix WD (1993) Mater. Res. Symp. Proc. 308:613CrossRefGoogle Scholar
  10. 10.
    10. Durst K, Backes B, Goken M (2005) Scr. Mater. 52:1093CrossRefGoogle Scholar
  11. 11.
    11. Elmustafa AA, Stone DS (2002) Acta Mater. 50:3641CrossRefGoogle Scholar
  12. 12.
    12. Elmustafa AA, Stone DS (2003) J. Mech. Phys. Solids 51:357CrossRefGoogle Scholar
  13. 13.
    13. Elmustafa AA, Ananda AA, Elmahboub WM (2004) J. Mater. Res. 19:768CrossRefGoogle Scholar
  14. 14.
    14. Elmustafa AA, Ananda AA, Elmahboub WM (2004) J. Eng. Mater. Technol. 126:353CrossRefGoogle Scholar
  15. 15.
    15. Feng G, Nix WD (2004) Scr. Mater. 51:599CrossRefGoogle Scholar
  16. 16.
    16. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) J. Mech. Phys. Solids 47:1239CrossRefGoogle Scholar
  17. 17.
    17. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) J. Mech. Phys. Solids 48:99CrossRefGoogle Scholar
  18. 18.
    18. Huang Y, Xue Z, Gao H, Nix WD, Xia ZC (2000) J. Mater. Res. 15:1786CrossRefGoogle Scholar
  19. 19.
    19. Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) Int. J. Plast. 20:753CrossRefGoogle Scholar
  20. 20.
    20. Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) J. Mech. Phys. Solids 54:1668CrossRefGoogle Scholar
  21. 21.
    21. Huang Y, Feng X, Pharr GM, Hwang KC (2007) Model. Simul. Mater. Sci. Eng. 15:255CrossRefGoogle Scholar
  22. 23.
    Johnson KL, (1970) J. Mech. Phys. Solids 18:115.CrossRefGoogle Scholar
  23. 24.
    24. Kim JY, Lee BW, Read DT, Kwon D (2005) Scr. Mater. 52:353CrossRefGoogle Scholar
  24. 25.
    25. Kocks UF (1970) Metall. Mater. Trans. 1:1121Google Scholar
  25. 26.
    26. Kok S, Beaudoin AJ, Tortorelli DA (2002) Int. J. Plast. 18:715CrossRefGoogle Scholar
  26. 27.
    27. Kok S, Beaudoin AJ, Tortorelli DA (2002) Acta Mater. 50:1653CrossRefGoogle Scholar
  27. 28.
    28. Kok S, Beaudoin AJ, Tortorelli DA, Lebyodkin M (2002) Model. Simul. Mater. Sci. Eng. 10:745CrossRefGoogle Scholar
  28. 29.
    29. Lim YY, Chaudhri MM (1999) Philos. Mag. A 79:2979CrossRefGoogle Scholar
  29. 30.
    30. Liu Y, Ngan AHW (2001) Scr. Mater. 44:237CrossRefGoogle Scholar
  30. 31.
    31. Ma Q, Clarke DR (1995) J. Mater. Res. 10:853CrossRefGoogle Scholar
  31. 32.
    32. McElhaney KW, Vlassak JJ, Nix WD (1998) J. Mater. Res. 13:1300CrossRefGoogle Scholar
  32. 33.
    33. Nix WD (1989) Metall. Trans. A 20A:2217Google Scholar
  33. 34.
    34. Nix WD, Gao H (1998) J. Mech. Phys. Solids 46:411CrossRefGoogle Scholar
  34. 35.
    35. Nye JF (1953) Acta Metall. Mater. 1:153CrossRefGoogle Scholar
  35. 36.
    36. Tymiak NI, Kramer DE, Bahr DF, Wyrobek TJ, Gerberich WW (2001) Acta Mater. 49:1021CrossRefGoogle Scholar
  36. 37.
    37. Oliver WC, Pharr GM (1992) J. Mater. Res. 7:1564CrossRefGoogle Scholar
  37. 38.
    38. Poole WJ, Ashby MF, Fleck NA (1996) Scr. Mater. 34:559CrossRefGoogle Scholar
  38. 39.
    39. Qiu X, Huang Y, Nix WD, Hwang KC, Gao H (2001) Acta Mater. 49:3949CrossRefGoogle Scholar
  39. 40.
    40. Qu S, Huang Y, Nix WD, Jiang H, Zhang F, Hwang KC (2004) J. Mater. Res. 19:3423CrossRefGoogle Scholar
  40. 41.
    Qu S, Siegmund T, Huang Y, Wu PD, Zhang F, Hwang KC, (2005) Comp. Sci. Tech. 65:1244CrossRefGoogle Scholar
  41. 42.
    42. Qu S, Huang Y, Pharr GM, Hwang KC (2006) Int. J. Plast. 22:1265CrossRefGoogle Scholar
  42. 44.
    44. Shi MX, Huang Y, Gao H (2004) Int. J. Plast. 20:1739CrossRefGoogle Scholar
  43. 45.
    45. Stelmashenko NA, Walls AG, Brown LM, Milman YV (1993) Acta Metall. Mater. 41:2855CrossRefGoogle Scholar
  44. 46.
    46. Suresh S, Nieh TG, Choi BW (1999) Scr. Mater. 41:951CrossRefGoogle Scholar
  45. 47.
    47. Swadener JG, George EP, Pharr GM (2002) J. Mech. Phys. Solids 50:681CrossRefGoogle Scholar
  46. 48.
    48. Swadener JG, Misra A, Hoagland RG, Nastasi A (2002) Scr. Mater. 47:343CrossRefGoogle Scholar
  47. 49.
    49. Tabor D (1951) The Hardness of Metal. Clarendon, Oxford, p. 44Google Scholar
  48. 50.
    50. Taylor GI (1934) Proc. R. Soc. Lond. A 145:362CrossRefGoogle Scholar
  49. 51.
    51. Taylor GI (1938) J. Inst. Met. 62:307Google Scholar
  50. 52.
    52. Xue Z, Huang Y, Hwang KC, Li M (2002) J. Eng. Mater. Technol. 124:371CrossRefGoogle Scholar
  51. 53.
    53. Zagrebelny AV, Lilleodden ET, Gerberich WW, Carter BC (1999) J. Am. Ceram. Soc. 82:1803CrossRefGoogle Scholar
  52. 54.
    54. Zhang TY, Xu WH, Zhao MH (2004) Acta Mater. 52:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.FML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.Department of Civil and Environmental Engineering, Department of Mechanical EngineeringNorthwestern UniversityEvanston

Personalised recommendations