Advertisement

Nanoscale Testing of One-Dimensional Nanostructures

  • Bei Peng
  • Yugang Sun
  • Yong Zhu
  • Hsien-Hau Wang
  • Horacio EspinosaD.

11.1 Introduction

The emergence of numerous nanoscale materials and structures such as nanowires (NWs), nanorods, nanotubes, and nanobelts of various materials in the past decade has prompted a need for methods to characterize their unique mechanical properties. These one-dimensional (ID) nanostructures possess superior mechanical properties [1, 2]; hence, applications of these structures ranging from nanoelectromechanical systems (NEMS) [3] to nanocomposites [4] are envisioned.

Two overarching questions have spurred the development of nanomechanical testing techniques and the modeling of materials behavior at the nanoscale: how superior is material behavior at the nanoscale as compared to its bulk counterpart, and what are the underlying mechanisms that dictate this? Due to the limited number of atoms present in these nanostructures, they provide an excellent opportunity to couple experimentation and atomistic modeling on a one-to-one basis. This approach has the potential to greatly...

Keywords

Atomic Force Microscopy Actuation Voltage Electrostatic Actuator Thermal Actuator Load Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Alberto Corigliano for valuable discussions in the modeling of the thermal actuator. A special thank is also due to Ivan Petrov, E. Olson, and J.-G. Wen for their guidance in the development of the in situ TEM holder. This work was supported by National Science Foundation Grants DMR-0315561, CMS-00304472 and CMMI-0555734. Nanomanipulation was carried out in the Center for Micro-analysis of Materials at the University of Illinois, which is partly supported by the US Department of Energy under Grant DEFG0296-ER45439.

References

  1. 1.
    1. Iijima S (1991) Nature 354(6348):56CrossRefGoogle Scholar
  2. 2.
    Yakobson BI, Avouris P (2001) Carbon Nanotubes. Topics in Applied Physics, vol. 80. Springer, Berlin, p. 287Google Scholar
  3. 3.
    3. Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Nature 424(6947):408CrossRefGoogle Scholar
  4. 4.
    4. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Nature 423(6941):703CrossRefGoogle Scholar
  5. 5.
    5. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381(6584):678CrossRefGoogle Scholar
  6. 6.
    6. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Science 283(5407):1513CrossRefGoogle Scholar
  7. 7.
    7. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Appl. Phys. Lett. 74(25):3803CrossRefGoogle Scholar
  8. 8.
    8. Wong EW, Sheehan PE, Lieber CM (1997) Science 277(5334):1971CrossRefGoogle Scholar
  9. 9.
    9. Shen WD, Jiang B, Han BS, Xie SS (2000) Phys. Rev. Lett. 84(16):3634CrossRefGoogle Scholar
  10. 10.
    10. Li XD, Hao HS, Murphy CJ, Caswell KK (2003) Nano Lett. 3(11):1495CrossRefGoogle Scholar
  11. 11.
    11. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287(5453):637CrossRefGoogle Scholar
  12. 12.
    12. Tsuchiya T, Tabata O, Sakata J, Taga Y (1998) J. Microelectromech. Syst. 7(1):106CrossRefGoogle Scholar
  13. 13.
    13. Greek S, Ericson F, Johansson S, Furtsch M, Rump A (1999) J. Micromech. Microeng. 9(3):245CrossRefGoogle Scholar
  14. 14.
    14. Chasiotis I, Knauss WG (2002) Exp. Mech. 42(1):51CrossRefGoogle Scholar
  15. 15.
    15. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) Acta Mater. 51(7):1937CrossRefGoogle Scholar
  16. 16.
    16. Robertson IM, Lee TC, Birnbaum HK (1992) Ultramicroscopy 40(3):330CrossRefGoogle Scholar
  17. 17.
    17. Haque MA, Saif MTA (2002) Exp. Mech. 42(1):123CrossRefGoogle Scholar
  18. 18.
    18. Haque MA, Saif MTA (2004) Proc. Natl. Acad. Sci. USA 101(17):6335CrossRefGoogle Scholar
  19. 19.
    19. van Arsdell WW, Brown SB (1999) J. Microelectromech. Syst. 8(3):319CrossRefGoogle Scholar
  20. 20.
    20. Osterberg PM, Senturia SD (1997) J. Microelectromech. Syst. 6(2):107CrossRefGoogle Scholar
  21. 21.
    21. Kahn H, Ballarini R, Mullen RL, Heuer AH (1999) Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 455(1990):3807CrossRefGoogle Scholar
  22. 22.
    22. Zhu Y, Moldovan N, Espinosa HD (2005) Appl. Phys. Lett. 86(1):013506CrossRefGoogle Scholar
  23. 23.
    23. Zhu Y, Espinosa HD (2005) Proc. Natl. Acad. Sci. USA 102(41):14503CrossRefGoogle Scholar
  24. 24.
    24. Lu JP (1997) Phys. Rev. Lett. 79(7):1297CrossRefGoogle Scholar
  25. 25.
    25. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Nature 389(6651):582Google Scholar
  26. 26.
    26. Williams PA, Papadakis SJ, Falvo MR, Patel AM, Sinclair M, Seeger A, Helser A, Taylor RM, Washburn S, Superfine R (2002) Appl. Phys. Lett. 80(14):2574CrossRefGoogle Scholar
  27. 27.
    27. Cumings J, Zettl A (2000) Science 289(5479):602CrossRefGoogle Scholar
  28. 28.
    28. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Appl. Phys. Lett. 77(9):1399CrossRefGoogle Scholar
  29. 29.
    29. Chen XQ, Saito T, Yamada H, Matsushige K (2001) Appl. Phys. Lett. 78(23):3714CrossRefGoogle Scholar
  30. 30.
    30. Hughes MP, Morgan H (1998) J. Phys. D Appl. Phys. 31(17):2205CrossRefGoogle Scholar
  31. 31.
    31. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Science 291(5504):630CrossRefGoogle Scholar
  32. 32.
    32. Fujiwara M, Oki E, Hamada M, Tanimoto Y, Mukouda I, Shimomura Y (2001) J. Phys. Chem. A 105(18):4383CrossRefGoogle Scholar
  33. 33.
    33. Rao SG, Huang L, Setyawan W, Hong SH (2003) Nature 425(6953):36CrossRefGoogle Scholar
  34. 34.
    34. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Science 283(5402):661CrossRefGoogle Scholar
  35. 35.
    35. Dai HJ (2000) Phys. World 13(6):43Google Scholar
  36. 36.
    36. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Nature 395(6705):878CrossRefGoogle Scholar
  37. 37.
    37. He RR, Gao D, Fan R, Hochbaum AI, Carraro C, Maboudian R, Yang PD (2005) Adv. Mater. 17(17):2098CrossRefGoogle Scholar
  38. 38.
    38. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Phys. Rev. Lett. 82(5):944CrossRefGoogle Scholar
  39. 39.
    39. Pan ZW, Xie SS, Lu L, Chang BH, Sun LF, Zhou WY, Wang G, Zhang DL (1999) Appl. Phys. Lett. 74(21):3152CrossRefGoogle Scholar
  40. 40.
    40. Espinosa HD, Zhu Y, Moldovan N (2007), J. Microelectromech. Syst. 16: 1219CrossRefGoogle Scholar
  41. 41.
    41. Chu L, Que L, Gianchandani Y (2002) J. Microelectromech. Syst. 11:489CrossRefGoogle Scholar
  42. 42.
    42. Fischer E, Labossiere P (2002) In: Proceedings of the SEM Annual Conference on Experimental and Applied Mechanics, Milwaukee, WIGoogle Scholar
  43. 43.
    43. Saif MTA, MacDonald NC (1996) Sens. Actuators A 52:65CrossRefGoogle Scholar
  44. 44.
    44. Tang WC, Nguyen TCH, Howe RT (1989) Sens. Actuators A 20:53CrossRefGoogle Scholar
  45. 45.
    45. Legtenberg R, Groeneveld AW, Elwenspoek M (1996) J. Micromech. Microeng. 6:320CrossRefGoogle Scholar
  46. 46.
    46. Senturia SD (2002) Microsystem Design. Kluwer, BostonGoogle Scholar
  47. 47.
    47. Boser PE (1997) In: Proc. Transducers, Chicago, ILGoogle Scholar
  48. 48.
    48. Geisberger AA, Sarkar N, Ellis M, Skidmore GD (2003) J. Microelectromech. Syst. 12:513CrossRefGoogle Scholar
  49. 49.
    49. Park JS, Chu LL, Oliver AD, Gianchandani YB (2001) J. Microelectromech. Syst. 10:255CrossRefGoogle Scholar
  50. 50.
    50. Chu LL, Gianchandani YB (2003) J. Micromech. Microeng. 13:279CrossRefGoogle Scholar
  51. 51.
    51. Pai MF, Tien NC (2000) Sens. Actuators A 83:237CrossRefGoogle Scholar
  52. 52.
    52. Kapels H, Aigner R, Binder J (2000) IEEE Trans. Electron. Devices 47:1522CrossRefGoogle Scholar
  53. 53.
    53. Chiao M, Lin LW (2000) J. Microelectromech. Syst. 9:146CrossRefGoogle Scholar
  54. 54.
    54. Lott CD, Mclain TW, Harb JN, Howell LL (2002) Sens. Actuators A 101:239CrossRefGoogle Scholar
  55. 55.
    55. Huang QA, Lee NKS (1999) Microsyst. Technol. 5:133CrossRefGoogle Scholar
  56. 56.
    56. Mankame ND, Ananthasuresh GK (2001) J. Micromech. Microeng. 11:452CrossRefGoogle Scholar
  57. 57.
    57. Que L, Park JS, Gianchandani YB (2001) J. Microelectromech. Syst. 10:247CrossRefGoogle Scholar
  58. 58.
    58. Boser BE, Howe RT (1996) IEEE J. Solid-State Circuits 31:366CrossRefGoogle Scholar
  59. 59.
    59. Huang JM, Liew KM, Wong CH, Rajendran S, Tan MJ, Liu AQ (2001) Sens. Actuators A 93:273CrossRefGoogle Scholar
  60. 60.
    60. Espinosa HD, Peng B, Prorok BC, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) J. Appl. Phys. 94:6076CrossRefGoogle Scholar
  61. 61.
    61. Sharpe WN, Jackson KM, Hemker KJ, Xie Z (2001) J. Microelectromech. Syst. 10:317CrossRefGoogle Scholar
  62. 62.
    62. Corigliano A, De Masi B, Frangi A, Comi C, Villa A, Marchi M (2004) J. Microelectromech. Syst. 13:200CrossRefGoogle Scholar
  63. 63.
    63. Giancoli D (2000) Physics for Scientists and Engineers, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  64. 64.
    64. Espinosa HD, Prorok B, Peng B (2004) J. Mech. Phys. Solids 52:667CrossRefGoogle Scholar
  65. 65.
    65. Barber A, Kaplan-Ashiri I, Cohen S, Tenne R, Wagner H (2005) Compos. Sci. Technol. 65:2380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bei Peng
    • 1
  • Yugang Sun
    • 1
  • Yong Zhu
    • 1
  • Hsien-Hau Wang
    • 2
  • Horacio EspinosaD.
    • 2
  1. 1.Mechanical EngineeringNorthwestern UniversityEvanston
  2. 2.Argonne National LaboratoryArgonne

Personalised recommendations