Advertisement

10.1 Introduction

With wide applications of thin films in microelectronic devices, microelectromechanical systems (MEMS), and nanoelectromechanical systems (NEMS), thin films have attracted great interest from academics and industrialists. In general, thin films have different mechanical properties from their bulk counterparts [3, 16, 23]. The mechanical properties of a thin film, such as its Young’s modulus and residual stress, are essential and necessary input information for detailed design and analysis of MEMS and NEMS devices. Mechanical characterization of thin films has in fact become one of the most important challenges in the development of micro/nanotechnologies and a very active area of research, as illustrated by the fact that the US Materials Research Society has organized 11 symposiums on the subject since 1988. The major difficulty encountered in the mechanical characterization of thin films is that they are not amenable to testing by conventional means because of their...

Keywords

Residual Stress Resultant Force Multilayer Film Deflection Curve Multilayer Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by an RGC grant from the Hong Kong Research Grants Council, Hong Kong Special Administrative Region, China. The author thanks Professor MH Zhao, Professor CF Qian, Professor JR Li, and Dr. J Wang for their help in the theoretical analysis and in the calculation of the spring compliances. The author is also grateful to Professor YJ Su, Dr. LQ Chen, Dr. WH Xu, Dr. XS Wang, and Dr. B Huang for their experimental work. The experiments were conducted at the Microelectronics Fabrication Facility and the Design and Manufacturing Services Facility, HKUST.

References

  1. 1.
    1. Alshits VI, Kirchner HOK (1995) Philos. Mag. A 72:1431CrossRefGoogle Scholar
  2. 2.
    2. Baker SP, Nix WD (1994) J. Mater. Res. 9:3131CrossRefGoogle Scholar
  3. 3.
    3. Brotzen FR (1994) Int. Mater. Rev. 39:24CrossRefGoogle Scholar
  4. 4.
    4. Bunge HJ (1982) Texture Analysis in Materials Science. Butterworths, LondonGoogle Scholar
  5. 5.
    5. Cao ZQ, Zhang TY, Zhang X (2005) J. Appl. Phys. 97:1049091Google Scholar
  6. 6.
    6. Cardinale GF, Tustison RW (1992) Thin Solid Films 207:126CrossRefGoogle Scholar
  7. 7.
    7. Courtney TH (2000) Mechanical Behavior of Materials, McGraw-Hill, SingaporeGoogle Scholar
  8. 8.
    8. De Boer MP, Gerberich WW (1996) Acta Mater. 44:3169CrossRefGoogle Scholar
  9. 9.
    9. Denhoff MW (2003) J. Micromech. Microeng. 13:686CrossRefGoogle Scholar
  10. 10.
    10. Espinosa HD, Prorok BC, Fischer M (2003) J. Mech. Phys. Solids 51:47CrossRefGoogle Scholar
  11. 11.
    11. Fang W, Wickert JA (1994) J. Micromech. Microeng. 4:116CrossRefGoogle Scholar
  12. 12.
    12. Fang W, Wickert JA (1996) J. Micromech. Microeng. 6:301CrossRefGoogle Scholar
  13. 13.
    13. Finot M, Suresh S (1996) J. Mech. Phys. Solids 44:683CrossRefGoogle Scholar
  14. 14.
    14. Guckel H, Randazzo T, Burns DW (1985) J. Appl. Phys. 57:1671CrossRefGoogle Scholar
  15. 15.
    15. Han SM, Saha R, Nix WD (2006) Acta Mater. 54:1571CrossRefGoogle Scholar
  16. 16.
    16. Hardwick DA (1987) Thin Solid Films 154:109CrossRefGoogle Scholar
  17. 17.
    17. Hill R (1952) Proc. Phys. Soc. A 65:349CrossRefGoogle Scholar
  18. 18.
    18. Hong S, Weihs TP, Bravman JC, Nix WD (1990) J. Electron. Mater. 19:903CrossRefGoogle Scholar
  19. 19.
    19. Huang B, Zhang TY (2006) J. Micromech. Microeng. 16:134CrossRefGoogle Scholar
  20. 20.
    JCPDS-International Centre for Diffraction Data (1998)Google Scholar
  21. 21.
    21. Klein CA, Miller RP (2000) J. Appl. Phys. 87:2265CrossRefGoogle Scholar
  22. 22.
    22. Kobrinsky MJ, Deutsch ER, Senturia SD (2000) IEEE J. Microelectromech. Syst. 9:361CrossRefGoogle Scholar
  23. 23.
    23. Nix WD (1989) Metall. Trans. A 20:2217CrossRefGoogle Scholar
  24. 24.
    24. Pharr GM, Oliver WC (1992) MRS Bull. 17:28Google Scholar
  25. 25.
    25. Petersen KE (1978) IEEE Trans. Electron Devices 25:1241CrossRefGoogle Scholar
  26. 26.
    26. Petersen KE, Guarnieri CR (1979) J. Appl. Phys. 50:6761CrossRefGoogle Scholar
  27. 27.
    27. Reyntjens S, Puers R (2000) J. Micromech. Microeng. 10:181CrossRefGoogle Scholar
  28. 28.
    28. Robic JY, Leplan H, Payleau Y, Rafin B (1996) Thin Solid Films 291:34CrossRefGoogle Scholar
  29. 29.
    29. Schweitz J (1992) MRS Bull. 17:34Google Scholar
  30. 30.
    30. Shi ZF, Huang B, Tan H, Huang Y, Zhang TY, Wu PD, Hwang KC, Gao HJ (2007) In: 44th Annual Technical Meeting of the Society of Engineering Science, 24 October 2007, College Station, TX, USAGoogle Scholar
  31. 31.
    31. Su YJ, Qian CF, Zhao MH, Zhang TY (2000) Acta Mater. 48:4901CrossRefGoogle Scholar
  32. 32.
    32. Tabata GO, Kawahata K, Sugiyama S, Igarashi I (1989) Sens. Actuators 20:135CrossRefGoogle Scholar
  33. 33.
    33. Timoshenko SP, Woinowsky-krieger S (1959) Theory of Plates and Shells, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    34. Townsend PH, Barnett DM, Brunner TA (1987) J. Appl. Phys. 62:4438CrossRefGoogle Scholar
  35. 35.
    35. Vlassak JJ, Nix WD (1992) J. Mater. Res. 7:3242CrossRefGoogle Scholar
  36. 36.
    36. Wang XS, Wang J, Zhao MH, Zhang TY (2005) IEEE J. Microelectromech. Syst. 14(3):634CrossRefGoogle Scholar
  37. 37.
    37. Wang XS, Li JR, Zhang TY (2006) J. Micromech. Microeng. 16:122CrossRefGoogle Scholar
  38. 38.
    38. Wang XS, Zhang TY (2007) Metall. Mater. Trans. A 38:2273CrossRefGoogle Scholar
  39. 39.
    39. Wong EW, Sheehan PE, Lieber CM (1997) Science 277(5334):1971CrossRefGoogle Scholar
  40. 40.
    40. Xu WH, Zhang TY (2003) Appl. Phys. Lett. 83:1731CrossRefGoogle Scholar
  41. 41.
    41. Yang FQ, Li JCM (2001) Langmuir 17:6524CrossRefGoogle Scholar
  42. 42.
    42. Yoshioka T, Ando T, Shikida M, Sato K (2000) Sens. Actuators A 82:291CrossRefGoogle Scholar
  43. 43.
    43. Zhang TY, Zhang X, Zohar Y (1998) J. Micromech. Microeng. 8:243CrossRefGoogle Scholar
  44. 44.
    44. Zhang TY, Chen LQ, Fu R (1999) Acta Mater. 47:3869CrossRefGoogle Scholar
  45. 45.
    45. Zhang TY, Su YJ, Qian CF, Zhao MH, Chen LQ (2000) Acta Mater. 48:2843CrossRefGoogle Scholar
  46. 46.
    46. Zhang TY, Zhao MH, Qian CF (2000) J. Mater. Res. 15:1868CrossRefGoogle Scholar
  47. 47.
    47. Zhang TY, Wang XS, Huang B (2005) Mater. Sci. Eng. A 409:329CrossRefGoogle Scholar
  48. 48.
    48. Zywitzki O, Sahm H, Krug M, Morgner H, Neumann M (2000) Surf. Coat. Technol. 133–134:555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHong Kong University of Science and TechnologymeKowloonChina

Personalised recommendations