Advertisement

Principles and Applications of Indentation

  • Mototsugu Sakai
Chapter

1.1 Introduction

The microscopic characterization of mechanical properties through indentation contact hardness has a long history exceeding more than one century. After intensive as well as extensive studies on the “plasticity” based on the contact hardness of ductile metals in the mid of twentieth century, the mechanical/physical understanding of contact hardness has well been advanced, since 1980s, along with the development of sophisticated instrumented indentation test systems that are capable of measuring the indentation load P and the penetration depth h in various mechanical modes. This has been enhanced by the upsurge of the electronics engineering and technology that made possible to provide several types of highly sophisticated electronic sensors for detecting load/displacement in accurate manners combined with the developments of microcomputing systems.

In ordinary mechanical testing for characterizing material properties, the test conditions, and the geometries and...

Keywords

Spherical Indentation Fredholm Integral Equation Indentation Load Elastic Contact Instrument Indentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1. Gilman JJ (1973) In: Westbrook JH, Conrad H (eds) The Science of Hardness Testing and Its Research Applications. American Society for Metals, Metals Park, pp. 51-74Google Scholar
  2. 2.
    2. Hertz H (1881) J für die reine und angewandte Mathematik 92:156. (For English translation see: Jones DE, Schott GA (1896) Miscellaneous Papers by H. Hertz. Macmillan, New York, pp. 146-162)Google Scholar
  3. 3.
    Hertz H (1882) Verhandlungen des Vereins zur Beförderung des Gewerbefleisses, November, Leipzig. (For English translation see: Jones DE, Schott GA (1896) Miscellaneous Papers by H. Hertz. Macmillan, New York, pp. 163-183)Google Scholar
  4. 4.
    4. Boussinesq J (1885) Application des potentials à l'etude de l'équilibre et du mouvement des solides élastiques. Gauthier-Villars, ParisGoogle Scholar
  5. 5.
    5. Love AEH (1939) Q. J. Math. (Oxford series) 10:161CrossRefGoogle Scholar
  6. 6.
    6. Sneddon IN (1965) Int. J. Eng. Sci. 3:47CrossRefGoogle Scholar
  7. 7.
    7. Sneddon IN (1951) Fourier Transforms. McGraw-Hill, New York, chaps. 9-10Google Scholar
  8. 8.
    8. Meyer E (1908) Yeit Ver Deut Ing 52:645, 740Google Scholar
  9. 9.
    9. Tabor D (1951) Hardness of Metals. Clarendon, Oxford, chap. 3Google Scholar
  10. 10.
    10. Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge, chap. 6Google Scholar
  11. 11.
    11. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, New YorkGoogle Scholar
  12. 12.
    12. Ferry JD (1961) Viscoelastic Properties of Polymers. Wiley, New YorkGoogle Scholar
  13. 13.
    13. Radok JRM (1957) Q. Appl. Math. 15:198Google Scholar
  14. 14.
    14. Lee EH, Radok JRM (1960) J. Appl. Mech. 27:438CrossRefGoogle Scholar
  15. 15.
    15. Hunter SC (1960) J. Mech. Phys. Solids 8:219CrossRefGoogle Scholar
  16. 16.
    16. Yang WH (1966) J. Appl. Mech. 33:395CrossRefGoogle Scholar
  17. 17.
    17. Ting TCT (1966) J. Appl. Mech. 33:845CrossRefGoogle Scholar
  18. 18.
    18. Ting TCT (1968) J. Appl. Mech. 35:248CrossRefGoogle Scholar
  19. 19.
    19. Shimizu S, Yanagimoto T, Sakai M (1999) J. Mater. Res. 14:4075CrossRefGoogle Scholar
  20. 20.
    20. Cheng L, Xia X, Yu W, Scriven LE, Gerberich WW (2000) J. Polym. Sci. B Polym. Phys. 38:10CrossRefGoogle Scholar
  21. 21.
    21. Sakai M, Shimizu S, Miyajima N, Tanabe Y, Yasuda E (2001) Carbon 39:605CrossRefGoogle Scholar
  22. 22.
    22. Sakai M, Shimizu S (2001) J. Non-Cryst. Solids 282:236CrossRefGoogle Scholar
  23. 23.
    23. Sakai M, Shimizu S (2002) J. Am. Ceram. Soc. 85:1210CrossRefGoogle Scholar
  24. 24.
    24. Yang S, Zhang YW, Zeng K (2004) J. Appl. Phys. 95:3655CrossRefGoogle Scholar
  25. 25.
    25. Stilwell NA, Tabor D (1961) Proc. Phys. Soc. London 78:169CrossRefGoogle Scholar
  26. 26.
    26. Shorshorov MKh, Bulychev SI, Alekhim VA (1981) Sov. Phys. Doki. 26:769Google Scholar
  27. 27.
    27. Newey D, Wilkins MA, Pollock HM (1982) J. Phys. E 15:119CrossRefGoogle Scholar
  28. 28.
    28. Frölich F, Grau P, Grellman W (1977) Phys. Stat. Sol. A 42:79CrossRefGoogle Scholar
  29. 29.
    29. Lawn BR, Howes VR (1981) J. Mater. Sci. 16:2745CrossRefGoogle Scholar
  30. 30.
    30. Pethica JB, Hutchings R, Oliver WC (1983) Philos. Mag. A 48:593CrossRefGoogle Scholar
  31. 31.
    31. Loubet JL, Georges JM, Marchesini O, Meille G (1984) J. Tribol. 106:43CrossRefGoogle Scholar
  32. 32.
    32. Loubet JL, Georges JM, Meille G (1986) In: Blau PJ, Lawn BR (eds) Microindentation Techniques in Materials Science and Engineering, ASTM STP 889. American Society for Testing and Materials, Philadelphia, pp. 72-89Google Scholar
  33. 33.
    33. Oliver WC, Hutchings R, Pethica JB (1986) In: Blau PJ, Lawn BR (eds) Microindentation Techniques in Materials Science and Engineering, ASTM STP 889. American Society for Testing and Materials, Philadelphia, pp. 90-108Google Scholar
  34. 34.
    34. Doerner MF, Nix WD (1986) J. Mater. Res. 1:601CrossRefGoogle Scholar
  35. 35.
    35. Stone D, LaFontaine WR, Alexopoulos P, Wu TW, Li CY (1988) J. Mater. Res. 3:141CrossRefGoogle Scholar
  36. 36.
    36. Joslin DL, Oliver WC (1990) J. Mater. Res. 5:123CrossRefGoogle Scholar
  37. 37.
    37. Pharr GM, Cook RF (1990) J. Mater. Res. 5:847CrossRefGoogle Scholar
  38. 38.
    38. Page TF, Oliver WC, McHargue CJ (1992) J. Mater. Res. 7:450CrossRefGoogle Scholar
  39. 39.
    39. Pharr GM, Oliver WC, Brotzen FR (1992) J. Mater. Res. 7:613CrossRefGoogle Scholar
  40. 40.
    40. Oliver WC, Pharr GM (1992) J. Mater. Res. 7:1564CrossRefGoogle Scholar
  41. 41.
    41. Sakai M (1993) Acta Metall. Mater. 41:1751CrossRefGoogle Scholar
  42. 42.
    42. Field JS, Swain MV (1993) J. Mater. Res. 8:297CrossRefGoogle Scholar
  43. 43.
    43. Söderlund E, Rowcliffe DJ (1994) J. Hard Mater. 5:149Google Scholar
  44. 44.
    44. Cook RF, Pharr GM (1994) J. Hard Mater. 5:179Google Scholar
  45. 45.
    45. Zeng K, Söderlund E, Giannakopouloa AE, Rowcliffe DJ (1996) Acta Mater. 44:1127CrossRefGoogle Scholar
  46. 46.
    46. Hainsworth SV, Chandler HW, Page TF (1996) J. Mater. Res. 11:1987CrossRefGoogle Scholar
  47. 47.
    47. Gerberich WW, Yu W, Kramer D, Strojny A, Bahr D, Lilleodden E, Nelson J (1998) J. Mater. Res. 13:421CrossRefGoogle Scholar
  48. 48.
    48. Bahr DF, Gerberich WW (1998) J. Mater. Res. 13:1065CrossRefGoogle Scholar
  49. 49.
    49. Sakai M, Shimizu S, Ishikawa T (1999) J. Mater. Res. 14:1471CrossRefGoogle Scholar
  50. 50.
    50. Bulychev SI (1999) Tech. Phys. 44:775CrossRefGoogle Scholar
  51. 51.
    51. Hay JC, Bolshakov A, Pharr GM (1999) J. Mater. Res. 14:2296CrossRefGoogle Scholar
  52. 52.
    52. Sakai M (1999) J. Mater. Res. 14:3630CrossRefGoogle Scholar
  53. 53.
    53. Malzbender J, With G, Toonder J (2000) J. Mater. Res. 15:1209CrossRefGoogle Scholar
  54. 54.
    54. Oliver WC (2001) J. Mater. Res. 16:3202CrossRefGoogle Scholar
  55. 55.
    55. Sakai M, Nakano Y (2002) J. Mater. Res. 17:2161CrossRefGoogle Scholar
  56. 56.
    56. Pharr GM, Bolshakov A (2002) J. Mater. Res. 17:2660CrossRefGoogle Scholar
  57. 57.
    57. Sakai M (2003) J. Mater. Res. 18:1631CrossRefGoogle Scholar
  58. 58.
    58. Oliver WC, Pharr GM (2004) J. Mater. Res. 19:3CrossRefGoogle Scholar
  59. 59.
    59. Cheng YT, Cheng CM (2004) Mater. Sci. Eng. R Rep. 44:91CrossRefGoogle Scholar
  60. 60.
    60. Zhang J, Sakai M (2004) Mater. Sci. Eng. A 381:62CrossRefGoogle Scholar
  61. 61.
    61. Taljat B, Pharr GM (2004) Int. J. Solids Struct. 41:3891CrossRefGoogle Scholar
  62. 62.
    62. Habbab H, Mellor BG, Syngellakis S (2006) Acta Mater. 54:1965CrossRefGoogle Scholar
  63. 63.
    63. Dhaliwal RS (1970) Int. J. Eng. Sci. 8:273CrossRefGoogle Scholar
  64. 64.
    64. Dhaliwal RS, Rau IS (1970) Int. J. Eng. Sci. 8:843CrossRefGoogle Scholar
  65. 65.
    65. Chen WT, Engel PA (1972) Int. J. Solids Struct. 8:1257CrossRefGoogle Scholar
  66. 66.
    66. King RB (1987) Int. J. Solids Struct. 23:1657CrossRefGoogle Scholar
  67. 67.
    67. Yu HY, Sanday SC, Rath BB (1990) J. Mech. Phys. Solids 38:745CrossRefGoogle Scholar
  68. 68.
    68. Wu TW (1991) J. Mater. Res. 6:407CrossRefGoogle Scholar
  69. 69.
    69. Gao H, Chiu CH, Lee J (1992) Int. J. Solids Struct. 29:2471CrossRefGoogle Scholar
  70. 70.
    70. Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Acta Mater. 44:3585CrossRefGoogle Scholar
  71. 71.
    71. Moody NR, Hwang RQ, Venka-Traman S, Angelo JE, Norwood DP, Gerberich WW (1998) Acta Mater. 46:585CrossRefGoogle Scholar
  72. 72.
    72. Menčík J, Munz D, Quandt E, Weppelmann ER, Swain MV (1997) J. Mater. Res. 12:2475CrossRefGoogle Scholar
  73. 73.
    73. Gouldston A, Koh HJ, Zeng KY, Giannakopoulos AE, Suresh S (2000) Acta Mater. 48:2277CrossRefGoogle Scholar
  74. 74.
    74. Malzbender J, With G, Toonder J (2000) Thin Solid Films 366:139CrossRefGoogle Scholar
  75. 75.
    75. Chen X, Vlassak JJ (2001) J. Mater. Res. 16:2974CrossRefGoogle Scholar
  76. 76.
    76. Toonder J, Balkenende R (2002) J. Mater. Res. 17:224CrossRefGoogle Scholar
  77. 77.
    77. Saha R, Nix WD (2002) Acta Mater. 50:23CrossRefGoogle Scholar
  78. 78.
    78. Tsui TY, Ross CA, Pharr GM (2003) J. Mater. Res. 18:1383CrossRefGoogle Scholar
  79. 79.
    79. Jung YG, Lawn BR, Martyniuk M, Huang H, Hu KZ (2004) J. Mater. Res. 19:3076CrossRefGoogle Scholar
  80. 80.
    80. Han SM, Saha R, Nix W (2006) Acta Mater. 54:1571CrossRefGoogle Scholar
  81. 81.
    81. Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge, chaps. 2-5Google Scholar
  82. 82.
    82. Maugis D (2000) Contact, Adhesion and Rupture of Elastic Solids. Springer, Berlin, chap. 4Google Scholar
  83. 83.
    83. Shaw MC (1973) In: Westbrook JH, Conrad H (eds) The Science of Hardness Testing and Its Research Applications, American Society for Metals, Metals Park, pp. 1-74Google Scholar
  84. 84.
    84. Hill R (1950) The Mathematical Theory of Plasticity. Clarendon, Oxford, chaps. 5-6Google Scholar
  85. 85.
    85. Sakai M, Nowak R (1992) In: Bannister (ed) Ceramics, Adding the Value, vol. 2. The Australian Ceramic Society, Melbourne, pp. 922-931Google Scholar
  86. 86.
    86. Shames IH, Cozzarelli FA (1992) Elastic and Inelastic Stress Analysis. Prentice Hall, Englewood Cliffs, chap. 6Google Scholar
  87. 87.
    87. Sakai M (2002) Philos. Mag. A 82:1841CrossRefGoogle Scholar
  88. 88.
    88. Sakai M, Zhang J, Matsuda A (2005) J. Mater. Res. 20:2173CrossRefGoogle Scholar
  89. 89.
    89. Hsueh CH, Miranda P (2004) J. Mater. Res. 19:94CrossRefGoogle Scholar
  90. 90.
    90. Timoshenko SP, Goodier JN (1951) Theory of Elasticity. McGraw-Hill, New York, chap. 12Google Scholar
  91. 91.
    91. Hsueh CH, Miranda P (2004) J. Mater. Res. 19:2774CrossRefGoogle Scholar
  92. 92.
    92. Yang FQ (2003) Mater. Sci. Eng. A 358:226CrossRefGoogle Scholar
  93. 93.
    93. Sakai M (2006) Philos. Mag. A 86:5607CrossRefGoogle Scholar
  94. 94.
    94. Sakai M, Sasaki M, Matsuda A (2005) Acta Mater. 53:4455CrossRefGoogle Scholar
  95. 95.
    95. Rekhson SM (1989) J. Am. Ceram. Soc. Bull. 68:1956Google Scholar
  96. 96.
    96. Briscoe BJ, Sebastian KS, Adams MN (1994) J. Phys. D Appl. Phys. 27:1156CrossRefGoogle Scholar
  97. 97.
    97. Shimamoto A, Tanaka K, Akiyama Y, Yoshizaki H (1996) Philos. Mag. A 74:1097CrossRefGoogle Scholar
  98. 98.
    98. Cheng YT, Cheng CM (1998) J. Mater. Res. 13:1059CrossRefGoogle Scholar
  99. 99.
    99. Seitzman LE (1998) J. Mater. Res. 13:2936CrossRefGoogle Scholar
  100. 100.
    100. Sawa T, Tanaka K (2002) Philos. Mag. A 82:1851CrossRefGoogle Scholar
  101. 101.
    101. Miyajima T, Sakai M (2006) Philos. Mag. 86:5729CrossRefGoogle Scholar
  102. 102.
    102. Sakai M, Hakiri N, Miyajima T (2006) J. Mater. Res. 21:2298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials ScienceToyohashi University of TechnologyTempakuchoJapan

Personalised recommendations