Skip to main content

Thermal Neutron Holography

  • Chapter
  • First Online:

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

X-ray and neutron diffraction techniques have for almost a century produced results that provide important insights into materials of interest to a wide range of scientific and technological disciplines. However, traditional diffraction techniques have their limits, and these limits are best exemplified by the fact that certain important materials (e.g., integral proteins) are difficult if not impossible to crystallize — diffraction techniques usually require high-quality single crystals. Recently developed atomic resolution X-ray and neutron holography techniques offer the promise to resolve the structures of difficult-to-crystallize materials to atomic resolution. This chapter will discuss the latest developments in neutron holography and the challenges that must be overcome to make the technique a viable tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.L. Bragg, The X-ray microscope. Nature 149, 470 (1942).

    Article  CAS  Google Scholar 

  2. D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948).

    Article  CAS  Google Scholar 

  3. G.R. Harp, D.K. Saldin, and B.P. Tonner, Atomic resolution holography in solids with localized sources. Phys. Rev. Lett. 65, 1012–1015 (1990).

    Article  CAS  Google Scholar 

  4. M. Zharnikov, M. Weinelt, P. Zebish, S M. tichler, and H. -P. Steinrück, First experimental determination of an adsorption site using multiple wave number photoelectron diffraction patterns. Phys. Rev. Lett. 73, 3548–3551 (1994).

    Article  CAS  Google Scholar 

  5. M.T. Sieger, J.M. Roesler, D. -S. Lin, T. Miller, and T. -C. Chiang, Holography of Ge(111)-c(2×8) by surface core-level photoemission. Phys. Rev. Lett. 73, 3117–3120 (1994).

    Article  CAS  Google Scholar 

  6. A. Orchowski, W. D. Rau, and H. Lichte, Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995).

    Article  CAS  Google Scholar 

  7. T. Matsushita, F.Z. Guo, F. Matsui., Y. Kato., and H. Daimon, Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram. Phys. Rev. B 75, 085419(1)–085419(5) (2007).

    Article  Google Scholar 

  8. M. Tegze and G. Faigel, Atomic resolution X-ray holography. Europhys. Lett. 16, 41–46 (1991).

    Article  CAS  Google Scholar 

  9. T. Gog., P.M. Len, G. Materlik., D. Bahr., C.S. Fadley, C. Sanchez-Hanke, Multiple-energy holography: Atomic images of hematite (Fe2O3). Phys. Rev. Lett. 76, 3132–3135 (1996).

    Article  CAS  Google Scholar 

  10. M. Tegze and G. Faigel. X-ray holography with atomic resolution. Nature 380, 49–51 (1996).

    Article  CAS  Google Scholar 

  11. M. Tegze, G. Faigel, S. Marchesini, M. Belakhovski, and A.I. Chumakov, Three dimensional imaging of atoms with isotropic 0.5 Å resolution. Phys. Rev. Lett. 82, 4847–4850 (1999).

    Article  CAS  Google Scholar 

  12. S. Eisebitt, J. Lüning, W.F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  CAS  Google Scholar 

  13. H.N. Chapman, et al. Femtosecond time-delay X-ray holography. Nature 448, 676–670 (2007).

    Article  CAS  Google Scholar 

  14. B. Sur, R.B. Rogge, R.P. Hammond, V.N.P. Anghel, and J. Katsaras, Atomic structure holography using thermal neutrons. Nature 414, 525–527 (2001).

    Article  CAS  Google Scholar 

  15. B. Sur, R.B. Rogge, R.P. Hammond, V.N.P. Anghel, and J. Katsaras Observation of Kossel and Kikuchi lines in thermal neutron incoherent scattering. Phys. Rev. Lett. 88, 065505(1)–065505(4) (2002).

    Article  CAS  Google Scholar 

  16. L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, Holographic imaging of atoms using thermal neutrons. Phys. Rev. Lett. 89, 175504(1)–175504(4) (2002).

    Article  CAS  Google Scholar 

  17. B. Sur, V.N.P. Anghel, R.B. Rogge, and J. Katsaras, Diffraction pattern from thermal neutron incoherent elastic scattering and the holographic reconstruction of the coherent scattering length distribution. Phys. Rev. B 71, 014105(1)–014105(12) (2005).

    Article  Google Scholar 

  18. P.G. Tanner, and T.E. Allibone, The patent literature of Nobel laureate Dennis Gabor (1900 – 1979). Notes Rec. R. Soc. Lond. 51, 105–120 (1979).

    Article  Google Scholar 

  19. A.L. Schawlow, and Townes C.H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    Article  CAS  Google Scholar 

  20. A.L. Schawlow, and Townes C.H. U.S. patent no. 2,929,222 (March 22, 1960).

    Google Scholar 

  21. A. Einstein, Zur quantentheorie der strahlung. Physik. Zeitschr. 18, 121–128 (1917).

    CAS  Google Scholar 

  22. Y.N. Denisyuk, On the reflection of optical properties of an object wave field scattered by it. Doklady Akademii Nauk SSSR 144, 1275–1278 (1962).

    Google Scholar 

  23. E.N. Leith, and J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962).

    Article  Google Scholar 

  24. A. Szöke, X-ray and electron holography using a local reference beam, in Short Wavelength Coherent Radiation: Generation and Applications, eds. D.J. Attwood, and J. Boker AIP Conf. Proc. No. 147, pp. 361–467 (American Institute of Physics, 1986).

    Google Scholar 

  25. S. Kikuchi, Diffraction of cathode rays by mica. Jpn. J. Phys. 5, 83–96 (1928).

    CAS  Google Scholar 

  26. W. Kossel, V. Loeck, and H. Voges, Die richtungsverteilung der in einem kristall entstandenen charakteristichen Röntgenstrahlung. Z. Phys. 94, 139–142 (1935).

    Article  CAS  Google Scholar 

  27. T. Gog, D. Bahr, and G. Materlik, Kossel diffraction in perfect crystals: X-ray standing waves in reverse. Phys. Rev. B 51, 6761–6764 (1995).

    Article  CAS  Google Scholar 

  28. G. Faigel, and M. Tegze, X-ray holography. Rep. Prog. Phys. 62, 355–393 (1999).

    Article  CAS  Google Scholar 

  29. J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932).

    Article  CAS  Google Scholar 

  30. J. Chadwick, The existence of a neutron. Proc. Roy. Soc. (London) A136, 692–708 (1932).

    Google Scholar 

  31. E. Rutherford, Nuclear constitution of atoms. Proc. Roy. Soc. A97, 374–400 (1920).

    Google Scholar 

  32. W. Mampe, P. Ageron, C. Bates, J.M. Pendelbury, and A. Steyerl, Neutron lifetime measured with stored ultracold neutrons. Phys. Rev. Lett. 63, 593–596 (1989).

    Article  CAS  Google Scholar 

  33. B. Jacrot, The study of biological structures by neutron scattering from solution. Rep (sp. nov.) from Tabba Tabba, western Australia. J. R. Soc. W. Aust. Prog. Phys. 39, 911–953 (1976).

    CAS  Google Scholar 

  34. L. Cser, G. Krexner, and Gy. Török, Atomic resolution neutron holography. Europhys. Lett. 54, 747–752 (2001).

    Article  CAS  Google Scholar 

  35. H. Bowley, Simpsonite (sp. nov) from Tabba Tabba, western Australia. J. R. Soc. W. Aust. 25, 89–92 (1939).

    CAS  Google Scholar 

  36. L.E.R. Taylor, X-ray studies of Simpsonite. J. R. Soc. W. Aust. 25, 93–97 (1939).

    CAS  Google Scholar 

  37. T.S. Ecrit, Ćerný, P., and F.C. Hawthorne, The crystal chemistry of Simpsonite. Can. Mineral. 30, 663–671 (1992).

    Google Scholar 

  38. G.L. Clark, and W. Duane, A new method of using x-rays in crystal analysis. Proc. Natl. Acad. Sci. U.S.A. 8, 90–96 (1922).

    Google Scholar 

  39. M. v. Laue, Die fluoreszensröntgenstrahlung von einkristallen. Ann. Physik 23, 705–746 (1935).

    Article  Google Scholar 

  40. V.F. Sears Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).

    Article  Google Scholar 

  41. L. Cser, G. Krexner, Markó, M., I. Sharkov, and Gy. Török, Direct observatotion of local distortion of a crystal lattice at picometer accuracy using atomic resolution neutron holography. Phys. Rev. Lett. 97, 255501(1)–255501(4) (2006).

    Article  CAS  Google Scholar 

  42. A. Goffeau, Life with 482 genes. Science 270, 445–446 (1995).

    Article  CAS  Google Scholar 

  43. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 180, 385–398 (1984).

    Article  CAS  Google Scholar 

  44. J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618–624 (1985).

    Article  Google Scholar 

  45. M. Garavito and J.P. Rosenbusch, Isolation and crystallization of bacterial porin. Meth. Enzymol. 125, 309–328 (1986).

    Article  CAS  Google Scholar 

  46. S.W. Cowan, et al., The structure of OmpF porin in a tetragonal crystal form. Structure 3, 1041–1050 (1995).

    Article  CAS  Google Scholar 

  47. R. Dutzler, et al., Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure 7, 425–434 (1999).

    Article  CAS  Google Scholar 

  48. I.A. Vartanyants, I.K. Robinson, I. McNulty, C. David, P. Wochner, and Th. Tschentscher, Coherent X-ray scattering and lensless imaging at the European XFEL Facility. J. Synch. Rad. 14, 453–470 (2007).

    Article  CAS  Google Scholar 

  49. H.N. Chapman, et al., Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sur, B., Rogge, R., Anghel, V., Katsaras, J. (2009). Thermal Neutron Holography. In: Bilheux, H., McGreevy, R., Anderson, I. (eds) Neutron Imaging and Applications. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78693-3_9

Download citation

Publish with us

Policies and ethics