Advertisement

Phase Change and Hysteresis in PEMFCs

  • Keith S. Promislow
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

A fundamental difficulty in upscaling micron-level transport parameters describing the components of polymer exchange membrane fuel cells (PEMFC) to device-level performance is the presence of fronts induced by various types of phase change. Fronts are not only a driving force behind hysteresis and slow transient behavior at the device level but also greatly complicate numerical resolution of governing models. PEMFC are typically not operated at steady-state, particularly in automotive applications, and more to the point do not necessarily perform at steady-state even when operated under steady conditions. The wide range of timescales present in PEMFC make direct simulation of comprehensive transient models impossible. Efficient transient modeling requires an identification of timescales, and particularly, a grouping of processes based upon similarity in timescale. A situation where analysis pays a handsome dividend, and which is richly exhibited in PEMFC operation, arises...

Keywords

Catalyst Layer Membrane Electrode Assembly Vapor Flux Liquid Volume Fraction Cathode Catalyst Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Benziger, J., Chia, E., Moxley, J., & Kevrekidis, I., Chem. Eng. Sci., 60 (6) 1743–1759 (2005).CrossRefGoogle Scholar
  2. [2]
    Berg, P., Calgar, A., Promislow, K., St.-Pierre, J., & Wetton, B. IMA J. Applied Math., 71 241–261 (2006).Google Scholar
  3. [3]
    Berg, P., Promislow, K., St.-Pierre, J., Stumper, J., & Wetton, B. J. Electrochem. Soc. 151 (2004) A341–A354.Google Scholar
  4. [4]
    Bernardi, D.M. & Verbrugge, M.W. J. Electrochem. Soc. 139, 2477 (1992).Google Scholar
  5. [5]
    Berning, T., Lu, D.M., & Djilali, N. J. Power Sources 106 282–292 (2002).CrossRefGoogle Scholar
  6. [6]
    Bradean, R., Promislow, K., & Wetton, B. Numerical Heat Transfer, Part A 42 1–18 (2002).CrossRefGoogle Scholar
  7. [7]
    Djilali, N. & Lu, D. Int. J. Thermal Sci. 41 29–40 (2002).CrossRefGoogle Scholar
  8. [8]
    Divisek, J., Fuhrmann, J., Gärtner, K., & Jung, R. J. Electrochem. Soc. 150 A811–A825 (2003).CrossRefGoogle Scholar
  9. [9]
    Fife, P.C. Dynamics of Internal Layers and Diffusive Interfaces, SIAM, Philadelphia, PA, (1988).CrossRefGoogle Scholar
  10. [10]
    Fowler, A.C. Mathematical Models in the Applied Sciences, Cambridge Texts in Applied Mathematics, Cambridge University Press, (1997).Google Scholar
  11. [11]
    Freunberger, S., Tsukada, A., Fafilek, G., & Buechi, F.N. Paul Scherrer Institute Scientific Report 94 2002 ISSN 1423–7342 (2003).Google Scholar
  12. [12]
    Freunberger, S.A., Santis, M., Schneider, I.A., Wokaun, A., & Buchi, F.N. J. Electrochem. Soc., 153 (2) A396–A405 (2006).Google Scholar
  13. [13]
    Ge, S., Li, X., Yi, B., & Hsing, I-M., J. Electrochem. Soc. 152 (6) A1149–A1157 (2005).CrossRefGoogle Scholar
  14. [14]
    van Genuchten, M. Soil Sci. Soc. Amer. J. 44 892–898 (1980).CrossRefGoogle Scholar
  15. [15]
    He, W., Yi, J.S., & Van Nguyen, T. AIChE J. 46 2053–2064 (2000).CrossRefGoogle Scholar
  16. [16]
    Hinatsu, J.T., Mizuhata, M., & Takenaka, H., J. Electrochem. Soc. 141 1493–1498 (1994).CrossRefGoogle Scholar
  17. [17]
    Hsing, I.M. & Futerko, P. Chemical Eng. Sci. 55 4209–4218 (2000).CrossRefGoogle Scholar
  18. [18]
    Kulikovsky, A. J. Electrochem. Soc. 150 A1432–1439 (2003).CrossRefGoogle Scholar
  19. [19]
    Leverett, M. Transactions of the American Institute of Mining and Metallurgical Engineers (Petroleum Division) 142 152–169 (1941).Google Scholar
  20. [20]
    Motupally, S., Becker, A.J., & Weidner, J.W., J. Electrochem. Soc., 147 3171 (2000).Google Scholar
  21. [21]
    Moxley, J.F., Tulyani, S., & Benziger, J., Chem Eng. Sci., 58 4705–4708 (2003).CrossRefGoogle Scholar
  22. [22]
    Natarajan, N. & Van Nguyen, T., J. Electrochem. Soc. 148 A1324–A1335 (2001).CrossRefGoogle Scholar
  23. [23]
    Nazarov, I. & Promislow, K., in Chemical Eng. Sci. 154 B623–B630 (2007).Google Scholar
  24. [24]
    Nieber, J., Bauters, T., Steenhuis, T., & Parlange, J.-Y. J. Hydrology 231–232 295–307 (2000).CrossRefGoogle Scholar
  25. [25]
    Pasaogullari, U. & Wang, C.Y. J. Electrochem. Soc. 151 A399–A406 (2004).CrossRefGoogle Scholar
  26. [26]
    Promislow, K. SIAM J. Math. Analysis 33 (6) 1455–1482 (2002).MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Promislow, K. & Stockie, J. SIAM J. Applied Math. 62 180–205 (2001).MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Promislow, K., Stockie, J., & Wetton, B., in Proc. Roy. Soc. London: Series A 462 789–816 (2006).Google Scholar
  29. [29]
    Rowe, A. & Li, X. J. Power Sources 102 82–96 (2001).CrossRefGoogle Scholar
  30. [30]
    Siegel, N., Ellis, M., Nelson, D., & von Spakovsky, M. J. Power Sources 128 173–184 (2004).CrossRefGoogle Scholar
  31. [31]
    Sone, Y., Ekdunge,P., & Simonsson, D., J. Electrochem. Soc. 143 1254–1259 (1996).CrossRefGoogle Scholar
  32. [32]
    Smoller, J. Shock waves and reaction diffusion equations, Springer-Verlag, Fundamental Principles of Mathematical Sciences 258 (1983).Google Scholar
  33. [33]
    Springer, T.E, Zawodzinski, T.A., & Gottesfeld, S. J. Electrochem. Soc. 138, 2334 (1991).Google Scholar
  34. [34]
    Stockie, J., Promislow, K., & Wetton, B. Int. J. Num. Methods in Fluids 41 577–599 (2003).MATHCrossRefGoogle Scholar
  35. [35]
    Taylor, R. & Krishna, R. Multicomponent Mass Transfer. Wiley Series in Chemical Engineering. John Wiley & Sons, (1993).Google Scholar
  36. [36]
    Thampan, T., Malhotra, S., Tang, H., & Datta, R., J. Electrochem. Soc., 138 2334 (1991).Google Scholar
  37. [37]
    Um, S. & Wang, C.Y. J. Power Sources 125 40–51 (2004).CrossRefGoogle Scholar
  38. [38]
    Um, S., Wang, C.Y., & Chen, C.S. J. Electrochem. Soc. 147 4485–4493 (2000).CrossRefGoogle Scholar
  39. [39]
    Wang, Z.H., Wang, C.Y., &Chen, K.S. J. Power Sources 94 40–50 (2001).CrossRefGoogle Scholar
  40. [40]
    Zemansky, R. & Dittman M. Heat and Thermodynamics, McGraw Hill, (1981).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Keith S. Promislow
    • 1
  1. 1.Department of MathematicsMichigan State UniversityUSA

Personalised recommendations