Analytical Models of a Polymer Electrolyte Fuel Cell

  • A. A. Kulikovsky
Part of the Topics in Applied Physics book series (TAP, volume 113)


General Remarks

A typical cross section of a polymer electrolyte fuel cell (PEFC) is sketched in Figure 6.1. The membrane electrode assembly (MEA) is clamped between two metal or graphite plates with the channels for feed gases supply, called the “flow field”. The MEA usually consists of two gas-diffusion layers (GDLs) and two catalyst layers, separated by proton-conducting membrane.


Oxygen Reduction Reaction Catalyst Layer Membrane Electrode Assembly Cathode Side Polarization Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to A. Egmen, H. Scharmann, and T. Wuester for valuable experimental material. Helpful discussions with J. Divisek, H. Dohle, M. Eikerling, A. Ku\(\grave{c}\)ernak, A. Kornyshev, J. Mergel, D. Stolten and K. Wippermann are gratefully acknowledged.


  1. [1]
    J. Newman. Electrochemical Systems. Prentice Hall, Inc., Englewood Cliffs, NJ 07632, 1991.Google Scholar
  2. [2]
    A. A. Kulikovsky, J. Divisek, and A. A. Kornyshev. Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones. J. Electrochem. Soc., 146(11):3981–3991, 1999.CrossRefGoogle Scholar
  3. [3]
    S. M. Senn and D. Poulikakos. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources, 130:178–191, 2004.CrossRefGoogle Scholar
  4. [4]
    K. A. Striebel, F. R. McLarnon, and E. J. Cairns. Steady-state model for an oxygen fuel cell electrode with an aqueous carbonate electrolyte. Ind. Eng. Chem. Res., 34:3632–3639, 1995.CrossRefGoogle Scholar
  5. [5]
    M. L. Perry, J. Newman, and E. J. Cairns. Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes. J. Electrochem. Soc., 145(1):5–15, 1998.CrossRefGoogle Scholar
  6. [6]
    T. E. Springer and S. Gottesfeld. Pseudohomogeneous catalyst layer model for polymer electrolyte fuel cell. In R. E. White, M. W. Verbrugge, and J. F. Stockel, editors, Modeling of Batteries and Fuel Cells, volume PV 91–10 of The Electrochemical Society Softbound Proceedings Series, pages 197–208, 10 South Main St., Pennington, NJ 08534–2896, USA, 1991. The Electrochem. Soc., Inc.Google Scholar
  7. [7]
    M. Eikerling and A. A. Kornyshev. Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J. Electroanal. Chem., 453:89–106, 1998.CrossRefGoogle Scholar
  8. [8]
    A. A. Kulikovsky. Quasi three-dimensional modeling of PEM fuel cell: Comparison of the catalyst layers performance. Fuel Cells, 1(2):162–169, 2001.CrossRefGoogle Scholar
  9. [9]
    A. A. Kulikovsky. Performance of catalyst layers of polymer electrolyte fuel cells: Exact solutions. Electrochem. Comm., 4(4):318–323, 2002.CrossRefGoogle Scholar
  10. [10]
    A. A. Kornyshev and A. A. Kulikovsky. Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells. Electrochimica Acta, 46(28):4389–4395, 2001.CrossRefGoogle Scholar
  11. [11]
    H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Mergel, and D. Stolten. The current voltage plot of PEM fuel cell with long feed channels. Electrochem. Comm., 3(2):73–80, 2001.CrossRefGoogle Scholar
  12. [12]
    A. A. Kulikovsky. The voltage current curve of a polymer electrolyte fuel cell: “Exact” and fitting equations. Electrochem. Comm., 4:845–852, 2002.CrossRefGoogle Scholar
  13. [13]
    A. A. Kulikovsky. Gas dynamics in channels of a gas-feed direct methanol fuel cell: Exact solutions. Electrochem. Comm., 3(10):572–579, 2001.CrossRefGoogle Scholar
  14. [14]
    G. J. M. Janssen and M. L. J. Overvelde. Water transport in the proton-exchage-membrane fuel cell: Measurements of the effective drag coefficient. J. Power Sources, 101:117–125, 2001.CrossRefGoogle Scholar
  15. [15]
    D. J. L. Brett, S. Atkins, N. P. Brandon, V. Vesovic, N. Vasileiadis, and A. R. Kućernak. Measurement of the current distribution along a single flow channel of a solid polymer fuel cell. Electrochem. Comm., 3:628–632, 2001.CrossRefGoogle Scholar
  16. [16]
    A. A. Kulikovsky, A. Kućernak, and A. Kornyshev. Feeding PEM fuel cells. Electrochimica Acta, 50:1323–1333, 2005.CrossRefGoogle Scholar
  17. [17]
    A. A. Kulikovsky. The effect of stoichiometric ratio \(\lambda\) on the performance of a polymer electrolyte fuel cell. Electrochimica Acta, 49(4):617–625, 2004.CrossRefGoogle Scholar
  18. [18]
    S. Gottesfeld and T. A. Zawodzinski. Polymer electrolyte fuel cells. In R. C. Alkire, H. Gerischer, D. M. Kolb, and Ch. W. Tobias, editors, Advances in Electrochemical Science and Engineering, volume 5, pages 195–301. Wiley-VCH, Weinheim, 1997.Google Scholar
  19. [19]
    S.-Y. Ahn, S.-J. Shin, H. Y. Ha, S.-A. Hong, Y.-C. Lee, T. W. Lim, and I.-H. Oh. Performance and lifetime analysis of the kW-class PEMFC stack. J. Power Sources, 106:295–303, 2002.CrossRefGoogle Scholar
  20. [20]
    A. A. Kulikovsky, H. Scharmann, and K. Wippermann. Dynamics of fuel cell performance degradation. Electrochem. Comm., 6:75–82, 2004.CrossRefGoogle Scholar
  21. [21]
    T. Okada, G. Xie, and M. Meeg. Simulation for water management in membranes for polymer electrolyte fuel cells. Electrochimica Acta, 43:2141–2155, 1998.CrossRefGoogle Scholar
  22. [22]
    M. Eikerling, Yu. I. Kharkats, A. A. Kornyshev, and Yu. M. Volfkovich. Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes. J. Electrochem. Soc., 145:2684, 1998.Google Scholar
  23. [23]
    D. R. Sena, E. A. Ticianelli, V. A. Paganin, and E. R. Gonzalez. Effect of water transport in a PEFC at low temperatures operating with dry hydrogen. J. Electroanal. Chem., 477:164–170, 1999.CrossRefGoogle Scholar
  24. [24]
    A. Weber and J. Newman. Transport in polymer-electrolyte membranes I. Physical model. J. Electrochem. Soc., 150:A1008-A1015, 2003.CrossRefGoogle Scholar
  25. [25]
    V. Gurau, F. Barbir, and H. Liu. An analytical solution of a half-cell model for PEM fuel cells. J. Electrochem. Soc., 147(7):2468–2477, 2000.CrossRefGoogle Scholar
  26. [26]
    L. Pisani, G. Murgia, M. Valentini, and B. D’Aguanno. A new semi-empirical approach to performance curves of polymer electrolyte fuel cells. J. Power Sources, 108:192–203, 2002.CrossRefGoogle Scholar
  27. [27]
    P. Berg, K. Promislow, J. St. Pierre, J. Stumper, and B. Wetton. Water management in PEM fuel cells. J. Electrochem. Soc., 151(3):A341–A353, 2004.CrossRefGoogle Scholar
  28. [28]
    T. F. Fuller and J. Newman. Experimental determination of the transport number of water in Nafion-117 membrane. J. Electrochem. Soc., 139(5): 1332–1337, 1992.CrossRefGoogle Scholar
  29. [29]
    A. A. Kulikovsky. The effect of cathodic water on performance of a polymer electrolyte fuel cell. Electrochimica Acta, 49(28):5187–5196, 2004.CrossRefGoogle Scholar
  30. [30]
    T. J. VanderNoot and I. Abrahams. The use of genetic algorithms in the non-linear regression of immittance data. J. Electroanal. Chem., 448:17–23, 1998.CrossRefGoogle Scholar
  31. [31]
    A. A. Kulikovsky. Semi-analytical 1D+1D model of a polymer electrolyte fuel cell. Electrochem. Comm., 6:969–976, 2004.CrossRefGoogle Scholar
  32. [32]
    A. A. Kulikovsky. Two models of a PEFC: Semi-analytical vs numerical. Int. J. Energy Res. 29:1153–1165, 2005.Google Scholar
  33. [33]
    A. A. Kulikovsky, T. Wüster, T. Egmen, and D. Stolten. Analytical and numerical analysis of PEM fuel cell performance curves. J. Electrochem. Soc., 152(6):A1290–A1300, 2005.CrossRefGoogle Scholar
  34. [34]
    A. A. Kulikovsky, H. Scharmann, and K. Wippermann. On the origin of voltage oscillations of a polymer electrolyte fuel cell in galvanostatic regime. Electrochem. Comm., 6:729–736, 2004.CrossRefGoogle Scholar
  35. [35]
    S. M. Senn and D. Poulikakos. Multistage polymer electrolyte fuel cells based on nonuniform cell potential distribution functions. Electrochem. Comm., 7:773–780, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. A. Kulikovsky
    • 1
  1. 1.Lawrence Berkeley National Laboratory and Department of Chemical EngineeringInstitute for Materials and Processes in Energy Systems (IWV–3) Research Center “Jülich”

Personalised recommendations