Advertisement

A Combination Model for Macroscopic Transport in Polymer-Electrolyte Membranes

  • Adam Z. Weber
  • John Newman
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

The membrane is the heart of the fuel-cell sandwich and hence the entire fuel cell. It is this electrolyte that makes polymer-electrolyte fuel cells (PEFCs) unique and, correspondingly, the electrolyte must have very specific properties. Thus, it needs to conduct protons but not electrons as well as inhibit gas transport in the separator but allow it in the catalyst layers. Furthermore, the membrane is one of the most important items in dealing with water management. It is for these reasons as well as for others that modeling and experiments of the membrane have been pursued more than any other layer [1].

Although there have been various membranes used, none is more researched or seen as the standard than the Nafion®family by E. I. du Pont de Nemours and Company. Like the other membranes used, the general structure of Nafion is a copolymer between polytetrafluoroethylene and polysulfonyl fluoride vinyl ether. These perfluorinated sulfonic acid (PFSA) ionomers exhibit...

Keywords

Liquid Water Transport Mode Expanded Channel Permeation Coefficient Ionic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would first like to thank the funding sources for this work, UTC Fuel Cells, LLC, EPA through a STAR graduate fellowship (91601301-0) and the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. We would also like to thank Stephen Paddison and Keith Promislow for inviting us to write this chapter.

References

  1. [1]
    A. Z. Weber and J. Newman, “Modeling Transport in Polymer-Electrolyte Fuel Cells,” Chemical Reviews, 104, 4679 (2004).CrossRefGoogle Scholar
  2. [2]
    N. Cornet, G. Gebel, and A. de Geyer, “Existence of the Schroeder Paradox with a Nafion Membrane? Small-Angle X-Ray Scattering Analysis,” Journal De Physique Iv, 8, 63 (1998).CrossRefGoogle Scholar
  3. [3]
    F. Meier and G. Eigenberger, “Transport Parameters for the Modelling of Water Transport in Ionomer Membranes for Pem-Fuel Cells,” Electrochimica Acta, 49, 1731 (2004).CrossRefGoogle Scholar
  4. [4]
    J. T. Hinatsu, M. Mizuhata, and H. Takenaka, “Water-Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water-Vapor,” Journal of the Electrochemical Society, 141, 1493 (1994).CrossRefGoogle Scholar
  5. [5]
    J. P. Meyers and J. Newman, “Simulation of the Direct Methanol Fuel Cell - I. Thermodynamic Framework for a Multicomponent Membrane,” Journal of the Electrochemical Society, 149, A710 (2002).CrossRefGoogle Scholar
  6. [6]
    T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, “Water Uptake by and Transport through Nafion(R) 117 Membranes,” Journal of the Electrochemical Society, 140, 1041 (1993).Google Scholar
  7. [7]
    T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, “A Comparative-Study of Water-Uptake by and Transport through Ionomeric Fuel-Cell Membranes,” Journal of the Electrochemical Society, 140, 1981 (1993).CrossRefGoogle Scholar
  8. [8]
    P. Schröder, “Über Erstarrungs- Und Quellungserscheinungen Von Gelatine,” Zeitschrift für physikalische Chemie, 45, 75 (1903).Google Scholar
  9. [9]
    C. Y. Wang, “Fundamental Models for Fuel Cell Engineering,” Chemical Reviews, 104, 4727 (2004).CrossRefGoogle Scholar
  10. [10]
    K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, “Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology,” Chemical Reviews, 104, 4637 (2004).CrossRefGoogle Scholar
  11. [11]
    T. F. Fuller, Solid-Polymer-Electrolyte Fuel Cells, Ph.D. Dissertation, University of California, Berkeley, CA (1992).Google Scholar
  12. [12]
    T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of the Electrochemical Society, 138, 2334 (1991).CrossRefGoogle Scholar
  13. [13]
    M. Eikerling, Y. I. Kharkats, A. A. Kornyshev, and Y. M. Volfkovich, “Phenomenological Theory of Electro-Osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes,” Journal of the Electrochemical Society, 145, 2684 (1998).CrossRefGoogle Scholar
  14. [14]
    D. M. Bernardi and M. W. Verbrugge, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” Journal of the Electrochemical Society, 139, 2477 (1992).CrossRefGoogle Scholar
  15. [15]
    G. J. M. Janssen, “A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell,” Journal of the Electrochemical Society, 148, A1313 (2001).CrossRefGoogle Scholar
  16. [16]
    T. Thampan, S. Malhotra, H. Tang, and R. Datta, “Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells,” Journal of the Electrochemical Society, 147, 3242 (2000).CrossRefGoogle Scholar
  17. [17]
    D. M. Bernardi and M. W. Verbrugge, “Mathematical Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte,” AIChE Journal, 37, 1151 (1991).CrossRefGoogle Scholar
  18. [18]
    M. Eikerling, A. A. Kornyshev, and U. Stimming, “Electrophysical Properties of Polymer Electrolyte Membranes: A Random Network Model,” Journal of Physical Chemistry B, 101, 10807 (1997).CrossRefGoogle Scholar
  19. [19]
    K. D. Kreuer, “On the Development of Proton Conducting Materials for Technological Applications,” Solid State Ionics, 97, 1 (1997).CrossRefGoogle Scholar
  20. [20]
    A. Z. Weber and J. Newman, “Physical Model of Transport in Polymer-Electrolyte Membranes,” in Proton Conducting Membrane Fuel Cells Iii, J. W. Van Zee, T. F. Fuller, S. Gottesfeld, and M. Murthy, Editors, The Electrochemical Society Proceeding Series, Pennington, NJ (2002).Google Scholar
  21. [21]
    K. A. Mauritz and R. B. Moore, “State of Understanding of Nafion,” Chemical Reviews, 104, 4535 (2004).CrossRefGoogle Scholar
  22. [22]
    W. Y. Hsu and T. D. Gierke, “Ion-Transport and Clustering in Nafion Perfluorinated Membranes,” Journal of Membrane Science, 13, 307 (1983).CrossRefGoogle Scholar
  23. [23]
    A. Vishnyakov and A. V. Neimark, “Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes,” Journal of Physical Chemistry B, 105, 9586 (2001).CrossRefGoogle Scholar
  24. [24]
    A. Vishnyakov and A. V. Neimark, “Molecular Simulation Study of Nafion Membrane Solvation in Water and Methanol,” Journal of Physical Chemistry B, 104, 4471 (2000).CrossRefGoogle Scholar
  25. [25]
    E. Spohr, P. Commer, and A. A. Kornyshev, “Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations,” Journal of Physical Chemistry B, 106, 10560 (2002).CrossRefGoogle Scholar
  26. [26]
    G. Gebel, P. Aldebert, and M. Pineri, “Swelling Study of Perfluorosulphonated Ionomer Membranes,” Polymer, 34, 333 (1993).CrossRefGoogle Scholar
  27. [27]
    R. S. McLean, M. Doyle, and B. B. Sauer, “High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using Afm Techniques,” Macromolecules, 33, 6541 (2000).CrossRefGoogle Scholar
  28. [28]
    P. Choi and R. Datta, “Sorption in Proton-Exchange Membranes. An Explanation of Schroeder's Paradox,” Journal of the Electrochemical Society, 150, E601 (2003).CrossRefGoogle Scholar
  29. [29]
    J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming, and Y. M. Volfkovich, “A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water,” Journal of the Electrochemical Society, 145, 2677 (1998).CrossRefGoogle Scholar
  30. [30]
    M. Falk, “An Infrared Study of Water in Perflurosulfonate (Nafion) Membranes,” Canadian Journal of Chemistry, 58, 1495 (1980).CrossRefGoogle Scholar
  31. [31]
    F. P. Orfino and S. Holdcroft, “The Morphology of Nafion: Are Ion Clusters Bridged by Channels or Single Ionic Sites?,” Journal of New Materials for Electrochemical Systems, 3, 285 (2000).Google Scholar
  32. [32]
    T. A. Zawodzinski Jr., S. Gottesfeld, S. Shoichet, and T. J. McCarthy, “The Contact Angle between Water and the Surface of Perfluorosulphonic Acid Membranes,” Journal of Applied Electrochemistry, 23, 86 (1993).CrossRefGoogle Scholar
  33. [33]
    W. Y. Hsu and T. D. Gierke, “Elastic Theory for Ionic Clustering in Perfluorinated Ionomers,” Macromolecules, 15, 101 (1982).CrossRefGoogle Scholar
  34. [34]
    W. Y. Hsu, J. R. Barkley, and P. Meakin, “Ion Percolation and Insulator-to-Conductor Transition in Nafion Perfluorosulfonic Acid Membranes,” Macromolecules, 13, 198 (1980).CrossRefGoogle Scholar
  35. [35]
    J. Newman and K. E. Thomas-Alyea, Electrochemical Systems 3rd ed., John Wiley & Sons, New York (2004).Google Scholar
  36. [36]
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York (1954).MATHGoogle Scholar
  37. [37]
    D. N. Bennion, Mass Transport of Binary Electrolyte Solutions in Membranes, Water Resources Center Desalination Report No. 4, Tech. Rep. 66-17, Department of Engineering, University of California, Los Angeles, CA (1966).Google Scholar
  38. [38]
    J. P. Meyers, Simulation and Analysis of the Direct Methanol Fuel Cell, Ph.D. Dissertation, University of California, Berkeley (1998).Google Scholar
  39. [39]
    A. Z. Weber and J. Newman, “Transport in Polymer-Electrolyte Membranes. Ii. Mathematical Model,” Journal of the Electrochemical Society, 151, A311 (2004).CrossRefGoogle Scholar
  40. [40]
    A. Z. Weber and J. Newman, “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” Journal of the Electrochemical Society, 152, A677 (2005).CrossRefGoogle Scholar
  41. [41]
    W. Y. Hsu, M. R. Giri, and R. M. Ikeda, “Percolation Transition and Elastic Properties of Block Copolymers,” Macromolecules, 15, 1210 (1982).CrossRefGoogle Scholar
  42. [42]
    P. C. Rieke and N. E. Vanderborgh, “Temperature-Dependence of Water-Content and Proton Conductivity in Polyperfluorosulfonic Acid Membranes,” Journal of Membrane Science, 32, 313 (1987).CrossRefGoogle Scholar
  43. [43]
    D. R. Morris and X. D. Sun, “Water-Sorption and Transport-Properties of Nafion-117-H,” Journal of Applied Polymer Science, 50, 1445 (1993).CrossRefGoogle Scholar
  44. [44]
    M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, “Mechanisms of Proton Conductance in Polymer Electrolyte Membranes,” Journal of Physical Chemistry B, 105, 3646 (2001).CrossRefGoogle Scholar
  45. [45]
    T. J. Edwards, Thermodynamics of Aqueous Solutions Containing One or More Volatile Weak Electrolytes, M.S. Thesis, University of California, Berkeley (1974).Google Scholar
  46. [46]
    C. M. Gates and J. Newman, “Equilibrium and Diffusion of Methanol and Water in a Nafion 117 Membrane,” AIChE Journal, 46, 2076 (2000).CrossRefGoogle Scholar
  47. [47]
    K. Broka and P. Ekdunge, “Oxygen and Hydrogen Permeation Properties and Water Uptake of Nafion(R) 117 Membrane and Recast Film for Pem Fuel Cell,” Journal of Applied Electrochemistry, 27, 117 (1997).CrossRefGoogle Scholar
  48. [48]
    N. Agmon, “The Grotthuss Mechanism,” Chemical Physics Letters, 244, 456 (1995).CrossRefGoogle Scholar
  49. [49]
    K. D. Kreuer, “On the Complexity of Proton Conduction Phenomena,” Solid State Ionics, 136, 149 (2000).CrossRefGoogle Scholar
  50. [50]
    R. Schlögl, “Zur Theorie Der Anomalen Osmose,” Zeitschrift für physikalische Chemie, Neue Folge, 3, 73 (1955).CrossRefGoogle Scholar
  51. [51]
    M. W. Verbrugge and R. F. Hill, “Transport Phenomena in Perfluorosulfonic Acid Membranes During the Passage of Current,” Journal of the Electrochemical Society, 137, 1131 (1990).CrossRefGoogle Scholar
  52. [52]
    R. F. Silva, A. De Francesco, and A. Pozio, “Tangential and Normal Conductivities of Nafion((R)) Membranes Used in Polymer Electrolyte Fuel Cells,” Journal of Power Sources, 134, 18 (2004).CrossRefGoogle Scholar
  53. [53]
    K. A. Mauritz and C. E. Rogers, “A Water Sorption Isotherm Model for Ionomer Membranes with Cluster Morphologies,” Macromolecules, 18, 483 (1985).CrossRefGoogle Scholar
  54. [54]
    B. Dreyfus, “Thermodynamic Properties of a Small Droplet of Water around an Ion in a Compressible Matrix,” Journal of Polymer Science Part B-Polymer Physics, 21, 2337 (1983).CrossRefGoogle Scholar
  55. [55]
    F. A. L. Dullien, Porous Media: Fluid Transport and Pore Structure 2 nd ed., Academic Press, Inc., New York (1992).Google Scholar
  56. [56]
    A. Z. Weber and J. Newman, “A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells,” AIChE Journal, 50, 3215 (2004).CrossRefGoogle Scholar
  57. [57]
    E. H. Cwirko and R. G. Carbonell, “Interpretation of Transport-Coefficients in Nafion Using a Parallel Pore Model,” Journal of Membrane Science, 67, 227 (1992).CrossRefGoogle Scholar
  58. [58]
    Y. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, and I. A. Blinov, “The Standard Contact Porosimetry,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 187, 349 (2001).CrossRefGoogle Scholar
  59. [59]
    Y. M. Volfkovich, N. A. Dreiman, O. N. Belyaeva, and I. A. Blinov, “Standard-Porosimetry Study of Perfluorinated Cation-Exchange Membranes,” Soviet Electrochemistry, 24, 324 (1988).Google Scholar
  60. [60]
    M. C. Tucker, M. Odgaard, S. Yde-Anderson, and J. O. Thomas, “Abstract 1235,” 203rd Meeting of the Electrochemical Society, Paris (2003).Google Scholar
  61. [61]
    S. Koter, “The Equivalent Pore Radius of Charged Membranes from Electroosmotic Flow,” Journal of Membrane Science, 166, 127 (2000).CrossRefGoogle Scholar
  62. [62]
    M. Cappadonia, J. W. Erning, and U. Stimming, “Proton Conduction of Nafion((R))-117 Membrane between 140 K and Room-Temperature,” Journal of Electroanalytical Chemistry, 376, 189 (1994).CrossRefGoogle Scholar
  63. [63]
    CRC Handbook of Chemistry and Physics 59th ed., R. C. Weast, Editor, CRC Press, Boca Raton, FL (1979).Google Scholar
  64. [64]
    A. Z. Weber, R. M. Darling, and J. Newman, “Modeling Two-Phase Behavior in Pefcs,” Journal of the Electrochemical Society, 151, A1715 (2004).CrossRefGoogle Scholar
  65. [65]
    J. P. Meyers and J. Newman, “Simulation of the Direct Methanol Fuel Cell - Ii. Modeling and Data Analysis of Transport and Kinetic Phenomena,” Journal of the Electrochemical Society, 149, A718 (2002).CrossRefGoogle Scholar
  66. [66]
    T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, and T. Arimura, “Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes,” Electrochimica Acta, 43, 3741 (1998).CrossRefGoogle Scholar
  67. [67]
    C. Gavach, G. Pamboutzoglou, M. Nedyalkov, and G. Pourcelly, “Ac Impedance Investigation of the Kinetics of Ion-Transport in Nafion Perfluorosulfonic Membranes,” Journal of Membrane Science, 45, 37 (1989).CrossRefGoogle Scholar
  68. [68]
    H. L. Yeager, “Transport Properties of Perflurosulfonate Polymer Membranes,” in Perfluorinated Ionomer Membranes, A. Eisenberg and H. L. Yeager, Editors, American Chemical Society Symposium Series, Number 180 (1982).Google Scholar
  69. [69]
    C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, “A Reverse-Current Decay Mechanism for Fuel Cells,” Electrochemical and Solid State Letters, 8, A273 (2005).CrossRefGoogle Scholar
  70. [70]
    A. Z. Weber and J. Newman, “Transport in Polymer-Electrolyte Membranes. I. Physical Model,” Journal of the Electrochemical Society, 150, A1008 (2003).CrossRefGoogle Scholar
  71. [71]
    A. Z. Weber and J. Newman, “Transport in Polymer-Electrolyte Membranes. Iii. Model Validation in a Simple Fuel-Cell Model,” Journal of the Electrochemical Society, 151, A326 (2004).CrossRefGoogle Scholar
  72. [72]
    M. Ise, K. D. Kreuer, and J. Maier, “Electroosmotic Drag in Polymer Electrolyte Membranes: An Electrophoretic Nmr Study,” Solid State Ionics, 125, 213 (1999).CrossRefGoogle Scholar
  73. [73]
    R. B. Moore and C. R. Martin, “Morphology and Chemical-Properties of the Dow Perfluorosulfonate Ionomers,” Macromolecules, 22, 3594 (1989).CrossRefGoogle Scholar
  74. [74]
    Y. M. Tsou, M. C. Kimble, and R. E. White, “Hydrogen Diffusion, Solubility, and Water-Uptake in Dows Short-Side-Chain Perfluorocarbon Membranes,” Journal of the Electrochemical Society, 139, 1913 (1992).CrossRefGoogle Scholar
  75. [75]
    F. N. Büchi and S. Srinivasan, “Operating Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases – Fundamental Aspects,” Journal of the Electrochemical Society, 144, 2767 (1997).CrossRefGoogle Scholar
  76. [76]
    G. J. M. Janssen and M. L. J. Overvelde, “Water Transport in the Proton-Exchange-Membrane Fuel Cell: Measurements of the Effective Drag Coefficient,” Journal of Power Sources, 101, 117 (2001).CrossRefGoogle Scholar
  77. [77]
    N. Rajalakshmi, T. T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar, and K. S. Dhathathreyan, “Water Transport Characteristics of Polymer Electrolyte Membrane Fuel Cell,” International Journal of Hydrogen Energy, 29, 1009 (2004).CrossRefGoogle Scholar
  78. [78]
    M. V. Williams, H. R. Kunz, and J. M. Fenton, “Operation of Nafion(R)-Based Pem Fuel Cells with No External Humidification: Influence of Operating Conditions with Gas Diffusion Layers,” Journal of Power Sources, 135, 122 (2004).CrossRefGoogle Scholar
  79. [79]
    R. H. Perry and D. W. Green, Perry's Chemical Engineers' Handbook 7th ed., J. O. Maloney, Editor, McGraw-Hill, New York (1997).Google Scholar
  80. [80]
    T. Sakai, H. Takenaka, N. Wakabayashi, Y. Kawami, and E. Torikai, “Gas Permeation Properties of Solid Polymer Electrolyte (Spe) Membranes,” Journal of the Electrochemical Society, 132, 1328 (1985).CrossRefGoogle Scholar
  81. [81]
    R. A. Pasternak, M. V. Christensen, and J. Heller, “Diffusion and Permeation of Oxygen, Nitrogen, Carbon Dioxide, and Nitrogen Dioxide through Polytetrafluoroethylene,” Macromolecules, 3, 366 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adam Z. Weber
    • 1
  • John Newman
    • 1
  1. 1.Lawrence Berkeley National Laboratory and Department of Chemical EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations