Advertisement

Coupled Proton and Water Transport in Polymer Electrolyte Membranes

  • J. Fimrite
  • B. Carnes
  • H. Struchtrup
  • N. Djilali
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

Solid polymer electrolytes, typically perfluorosulfonic acid (PFSA) membranes, are at the core of Polymer electrolyte membrane fuel cells (PEMFCs). These membranes electrically and mechanically isolate the anode and cathode while, when appropriately humidified, allowing for effective ion migration. Nafion, manufactured by DuPont, is one of the most thoroughly used and studied membranes in the PFSA family. Another family of membranes that holds some promise for use in PEMFCs is the group of sulfonated polyaromatic membranes, typically sulfonated polyetherketones. While research is being performed on other types of membranes, as well as hybrid membranes that might have been better-suited properties, information on these is scarce [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The functionality of polymer electrolyte membranes depends on an array of coupled transport phenomena that determine water content and conductivity. This Chapter synthesizes understanding of the salient phenomena,...

Keywords

Fuel Cell Sorption Isotherm Polymer Electrolyte Membrane Perfluorosulfonic Acid Fuel Cell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded in part by grants to ND from the Natural Sciences and Engineering Research Council of Canada and the MITACS Network of Centres of Excellence.

References

  1. [1]
    C. Chuy, V. I. Basura, E. Simon, S. Holdcroft, J. Horsfall and K. V. Lovell, J. Electrochem. Soc., 147, 4453 (2000).CrossRefGoogle Scholar
  2. [2]
    J. Ding, C. Chuy and S. Holdcroft, Macromolecules, 35, 1348 (2002).CrossRefGoogle Scholar
  3. [3]
    Kerres, J, Ullrich, A., Haring, T., Baldauf, M., Gebhardt, U. and W. Preidel, J. New Mat. Electr. Sys., 3, 229 (2000).Google Scholar
  4. [4]
    J. Kerres, W. Cui, R. Disson and W. Neubrand, J. Membrane Sci., 139, 211 (1998).CrossRefGoogle Scholar
  5. [5]
    C. Manea and M. Mulder, J. Membrane Sci. 206, 443 (2002).CrossRefGoogle Scholar
  6. [6]
    M. K. Song, Y. T. Kim, J. M. Fenton, H. R. Kunz and H. W. Rhee. J. Power Sources, 117, 14 (2003).CrossRefGoogle Scholar
  7. [7]
    V. I. Basura, C. Chuy, P. D. Beattie and S. Holdcroft, J. Electroanal. Chem., 501, 77 (2001).CrossRefGoogle Scholar
  8. [8]
    O. Savadogo, J. New Mat. Electr. Sys., 1, 47 (1998).Google Scholar
  9. [9]
    J. J. Sumner, S. E. Creager, J. J. Ma and D. D. DesMarteau, J. Electrochem. Soc., 145, 107 (1998).CrossRefGoogle Scholar
  10. [10]
    J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. Litt, J. Electrochem. Soc., 142, L121 (1995).CrossRefGoogle Scholar
  11. [11]
    T. Berning and N. Djilali, J. Electrochem. Soc., 150, A1589 (2003).CrossRefGoogle Scholar
  12. [12]
    S. Um and C. Y. Wang, J. Power Sources, 125 (1), 40–51 (2004).CrossRefGoogle Scholar
  13. [13]
    P. T. Nguyen, T. Berning and N. Djilali, J. Power Sources, 130 (1–2), 149 (2004).CrossRefGoogle Scholar
  14. [14]
    A. Z. Weber and J. Newman, Chem. Rev., 104, 4679–4726 (2004).CrossRefGoogle Scholar
  15. [15]
    B. Sivertsen and N. Djilali, J. Power Sources, 141 (1), 65–78 (2005).CrossRefGoogle Scholar
  16. [16]
    K. D. Kreuer, S. Paddison, E. Spohr and M. Schuster, Chem. Rev., 104, 4637 (2004).CrossRefGoogle Scholar
  17. [17]
    X. D. Din and E. E. Michaelides, AIChE J., 44, 35 (1998).CrossRefGoogle Scholar
  18. [18]
    S. J. Paddison, R. Paul and T. A. Zawodzinski, J. Chem. Phys., 115, 7753 (2001).CrossRefGoogle Scholar
  19. [19]
    R. Paul and S. J. Paddison, J. Chem. Phys., 115, 7762 (2001).CrossRefGoogle Scholar
  20. [20]
    S. J. Paddison, R. Paul and T. A. Zawodzinski, J. Electrochem. Soc., 147, 617 (2000).CrossRefGoogle Scholar
  21. [21]
    M. Eikerling, A. A. Kornyshev and U. Stimming, J. Phys. Chem. B, 101, 10807 (1997).CrossRefGoogle Scholar
  22. [22]
    T. Thampan, S. Malhotra, H. Tang and R. Datta, J. Electrochem. Soc., 147, 3242 (2000).CrossRefGoogle Scholar
  23. [23]
    J. Fimrite, B. Carnes, H. Struchtrup and N. Djilali, J. Electrochem. Soc., 152, A1815 (2005).CrossRefGoogle Scholar
  24. [24]
    J. Fimrite, H. Struchtrup and N. Djilali, J. Electrochem. Soc., 152, A1804 (2005).CrossRefGoogle Scholar
  25. [25]
    G. Inzelt, M. Pineri, J. W. Schultze and M. A. Vorotyntsev, Electrochim. Acta, 45, 2403 (2000).CrossRefGoogle Scholar
  26. [26]
    M. Laporta, M. Pegoraro and I. Zanderighi, Phys. Chem. Chem. Phys., 1, 4619 (1999).CrossRefGoogle Scholar
  27. [27]
    A. Z. Weber and J. Newman, J. Electrochem. Soc., 150, A1008 (2003).CrossRefGoogle Scholar
  28. [28]
    K. D. Kreuer J. Membrane Sci., 185, 29 (2000).CrossRefGoogle Scholar
  29. [29]
    P. Choi and R. Datta, J. Electrochem. Soc., 150, E601 (2003).CrossRefGoogle Scholar
  30. [30]
    J. Elliot, S. Hanna, A. M. S. Elliot, and G. E. Cooley, Phys. Chem. Chem. Phys., 1, 4855 (1999).CrossRefGoogle Scholar
  31. [31]
    A. Vishnyakov and A. V. Neimark, J. Phys. Chem. B, 104, 4471 (2000).CrossRefGoogle Scholar
  32. [32]
    K. D. Kreuer, Solid State Ionics, 136, 149 (2000).CrossRefGoogle Scholar
  33. [33]
    K. D. Kreuer, Solid State Ionics, 97, 1 (1997).CrossRefGoogle Scholar
  34. [34]
    Y. Sone, P. Ekdunge and D. Simonsson, J. Electrochem. Soc., 143, 1254 (1996).CrossRefGoogle Scholar
  35. [35]
    T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, J. Electrochem. Soc., 140, 1981 (1993).CrossRefGoogle Scholar
  36. [36]
    T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc., 140, 1041 (1993).CrossRefGoogle Scholar
  37. [37]
    K. D. Kreuer, Chem. Mater., 8, 610 (1996).CrossRefGoogle Scholar
  38. [38]
    M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrop and S. Walbran, J. Phys. Chem. B, 105, 3646 (2001).CrossRefGoogle Scholar
  39. [39]
    T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc., 138, 2334 (1991).CrossRefGoogle Scholar
  40. [40]
    P. Berg, K. Promislow, J. St-Pierre, J. Stumper and B. Wetton, J. Electrochem. Soc., 151, A341 (2004).CrossRefGoogle Scholar
  41. [41]
    B. R. Breslau and I. F. Miller, Ind. Eng. Chem. Fund., 10, 554 (1971).CrossRefGoogle Scholar
  42. [42]
    M. Verbrugge and D. Bernardi, AIChE J., 37, 1151 (1991).CrossRefGoogle Scholar
  43. [43]
    M. Verbrugge and D. Bernardi, J. Electrochem. Soc., 139, 2477 (1992).CrossRefGoogle Scholar
  44. [44]
    M. Eikerling, Y. I. Kharkats, A. A. Kornyshev and Y. M. Volfkovich, J. Electrochem. Soc., 145, 2684 (1998).CrossRefGoogle Scholar
  45. [45]
    T. Fuller and J. Newman, J. Electrochem. Soc., 140, 1218 (1993).CrossRefGoogle Scholar
  46. [46]
    D. M. Bernardi, J. Electrochem. Soc., 137, 3344 (1990).CrossRefGoogle Scholar
  47. [47]
    G. J. M. Janssen, J. Electrochem. Soc., 148, A1313 (2001).CrossRefGoogle Scholar
  48. [48]
    R. Taylor and R. Krishna, Multicomponent Mass Transfer, John Wiley & Sons, Toronto (1993).Google Scholar
  49. [49]
    P. J. A. M. Kerkhof, Chem. Eng. J., 64, 319 (1996).Google Scholar
  50. [50]
    E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media; The Dusty Gas Model, Elsevier, Amsterdam (1983).Google Scholar
  51. [51]
    R. Krishna and J. A. Wesselingh, Chem. Eng. Sci., 52, 861 (1997).CrossRefGoogle Scholar
  52. [52]
    T. A. Zawodzinski, J. Davey, J. Valerio and S. Gottesfeld, Electrochim. Acta, 40, 297 (1995).CrossRefGoogle Scholar
  53. [53]
    B. E. Conway, Ionic Hydration In Chemistry and Biophysics, Elsevier Scientific Publishing Company, Netherlands (1981).Google Scholar
  54. [54]
    D. R. Morris and X. Sun, J. Appl. Polym. Sci., 50, 1445 (1993).CrossRefGoogle Scholar
  55. [55]
    J. T. Hinatsu, M. Mizuhata and H. Takenaka, J. Electrochem. Soc., 141, 1493 (1994).CrossRefGoogle Scholar
  56. [56]
    B. Carnes and N. Djilali, Modelling and Simulation of Conduction of Protons and Liquid Water in a Polymer Electrolyte Membrane Using the Binary Friction Membrane Model, IESVic Report, University of Victoria (2005).Google Scholar
  57. [57]
    W. Ying, Y. J. Sohn, W. Y Lee, J. Ke and C. S. Kim, J. Power Sources, 145, 563–571 (2005).CrossRefGoogle Scholar
  58. [58]
    S. Litster, J. G. Pharoah, G. McLean and N. Djilali, J. Power Sources, 156, 334 (2006).Google Scholar
  59. [59]
    Y. Wang and C. Y. Wang, J. Power Sources, 147, 148 (2005).Google Scholar
  60. [60]
    J. Stumper, M. Löhr and S. Hamada, Proc. Int. Symp. Fuel Cell & Hydrogen Technologies, MetSoc, Calgary, Canada, 531 (2005).Google Scholar
  61. [61]
    J. Fimrite, Transport Phenomena in Polymer Electrolyte Membranes, MASc Thesis, University of Victoria (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. Fimrite
    • 1
  • B. Carnes
    • 1
  • H. Struchtrup
    • 1
  • N. Djilali
    • 1
  1. 1.Institute for Integrated Energy SystemsUniversity of VictoriaVictoriaCanada

Personalised recommendations