Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 113))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thampan, T., et al., PEM fuel cell as a membrane reactor. Catalysis Today, 2001. 67(1–3): pp. 15–32.

    Article  Google Scholar 

  2. Gierke, T.D., G.E. Munn, and F.C. Wilson, Morphology of perfluorosulfonated membrane products – wide-angle and small-angle X-Ray studies. Acs Symposium Series, 1982. 180: pp. 195–216.

    Article  Google Scholar 

  3. Weber, A.Z. and J. Newman, Modeling transport in polymer-electrolyte fuel cells. Chemical Reviews, 2004. 104(10): pp. 4679–4726.

    Article  Google Scholar 

  4. Wang, C.Y., Fundamental models for fuel cell engineering. Chemical Reviews, 2004. 104(10): pp. 4727–4765.

    Article  Google Scholar 

  5. Bernardi, D.M. and M.W. Verbrugge, A Mathematical-model of the solid-polymer-electrolyte fuel-cell. Journal of the Electrochemical Society, 1992. 139(9): pp. 2477–2491.

    Article  Google Scholar 

  6. Bernardi, D.M. and M.W. Verbrugge, Mathematical-model of a gas-diffusion electrode bonded to a polymer electrolyte. Aiche Journal, 1991. 37(8): pp. 1151–1163.

    Article  Google Scholar 

  7. Natarajan, D. and T. Van Nguyen, A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. Journal of the Electrochemical Society, 2001. 148(12): pp. A1324–A1335.

    Article  Google Scholar 

  8. Su, A., Y.C. Chiu, and F.B. Weng, The impact of flow field pattern on concentration and performance in PEMFC. International Journal of Energy Research, 2005. 29(5): pp. 409–425.

    Article  Google Scholar 

  9. Cha, S.W., et al., Geometric scale effect of flow channels on performance of fuel cells. Journal of the Electrochemical Society, 2004. 151(11): pp. A1856–A1864.

    Article  Google Scholar 

  10. Cha, S.W., et al., The scaling behavior of flow patterns: a model investigation. Journal of Power Sources, 2004. 134(1): pp. 57–71.

    Article  Google Scholar 

  11. Yan, W.M., et al., Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells. Journal of Power Sources, 2004. 125(1): pp. 27–39.

    Article  Google Scholar 

  12. Benziger, J.B., et al., A differential reactor polymer electrolyte membrane fuel cell. AIChE Journal, 2004. 50(8): pp. 1889–1900.

    Article  Google Scholar 

  13. Raistrick, I.D., Electrode assembly for use in a solid polymer electrolyte fuel cell. 1989, US: U.S. Department of Energy.

    Google Scholar 

  14. Benziger, J., Chia, J.E.-S., E. Kimball, and I.G. Kevrekidis, Reaction Dynamics in a Parallel Flow Channel PEM Fuel Cell. Journal of the Electrochemical Society, 2007. 154(8): pp. B835–B844.

    Google Scholar 

  15. Benziger, J.B., Chia, J.E.-S., Y. DeDecker, and I.G. Kevrekidis, Ignition Front Propagation in Polymer Electrolyte Membrane Fuel Cells. Journal of Physical Chemistry C, 2007. 111: 2330–2334.

    Google Scholar 

  16. Moxley, J.F., S. Tulyani, and J. Benziger, Steady-state multiplicity in polymer electrolyte membrane fuel cells. Chemical Engineering Science, 2003. 58: pp. 4705–4708.

    Article  Google Scholar 

  17. Froment, G.F. and K.B. Bischoff, Chemical Reactor Analysis and Design. Second ed. 1979, New York: John Wiley & Sons. 765.

    Google Scholar 

  18. Folger, H.S., Elements of chemical reaction engineering. Third ed. 1999, Upper Saddle River, NJ: Prentice Hall. 967.

    Google Scholar 

  19. Liljenroth, F.G., Starting and stability phenomena of ammonia-oxidation and similar reactions. Chemical and Metallurgical Engineering, 1918. 19: pp. 287–293.

    Google Scholar 

  20. van Heerden, C., Autothermic processes: properties and reactor design. Industrial and Engineering Chemistry, 1953. 45(6): pp. 1242–1247.

    Article  Google Scholar 

  21. Thampan, T., et al., Modeling of conductive transport in proton-exchange membranes for fuel cells. Journal of the Electrochemical Society, 2000. 147(9): pp. 3242–3250.

    Article  Google Scholar 

  22. Yang, C.R., Performance of Nafion/Zirconium Phosphate Composite Membranes in PEM Fuel Cells, in Department of Mechanical Engineering. 2003, Princeton NJ: Princeton University.

    Google Scholar 

  23. Benziger, J., et al., The dynamic response of PEM fuel cells to changes in load. Chemical Engineering Science, 2005. 60: pp. 1743–1759.

    Article  Google Scholar 

  24. Nazarov, I. and K. Promislow, Ignition waves in a stirred PEM fuel cell. Chemical Engineering Science, 2006. 61(10): pp. 3198–3209.

    Google Scholar 

  25. Benziger, J., Nehlsen, J., Blackwell, D., T. Brennan, and J. Itescu, Water flow in the gas diffusion layer of PEM fuel cells, Journal Of Membrane Science, 2005. 261(1–2): 98–106.

    Google Scholar 

  26. Satterfield, M.B. and J.B. Benziger. Investigation of PEM Fuel Cell Behavior: Swelling and Viscoelastic Properties. in ACS National Meeting. 2005. Washington DC: American Chemical Society.

    Google Scholar 

  27. Zhang, J.X. and R. Datta, Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. Journal of the Electrochemical Society, 2002. 149(11): pp. A1423–A1431.

    Article  Google Scholar 

  28. Lee, W.K., Van Zee, J.W., S. Shimpalee, and S. Dutta, Effect of Hunidition on PEM Fuel Cell Performance, Part I: Experiments. Proceedings of the ASME IMECE, Nashville, TN, HTD 364–1, pp. 359–366.

    Google Scholar 

  29. Woo, C.H.-K. and J.B. Benziger, PEM Fuel Cell Current Regulation by Fuel Feed Control, Chemical Engineering Science, 2007. 62: pp 957–968.

    Google Scholar 

  30. Mejia-Ariza, R., Effect of gas compositon on mass transfer to the cathode/membrane interface, 2005. http://www.princeton.edu/∼pccm/outreach/REU2005/REU2005Presentations/mejiaariza.pdf.

Download references

Acknowledgments

We thank the National Science Foundation (CTS -0354279 and DMR-0213707) for support of this work. Andy Bocarsly and Supramaniam Srinivasan were instrumental in introducing me to PEM fuel cells. I want to thank all the undergraduate students (J.F. Moxley, C. Teuscher, E. Karnas, C. Woo, R. Mejia-Ariza) and graduate students (E.-S. J.Chia, W. Hogarth, B. Satterfield) for their contributions in the lab. I especially want to thank my collaborator Ioannis Kevrekidis for encouragement to pursue this work, and developing mathematical models for the complex system dynamics.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Nomenclature

Achannel

cross-sectional area for flow channel

aw

water activity = Pw/Pw o

D

Gas phase diffusivity

F

volumetric flow rate of reactant feeds

I

current

iH+

proton current

kw

mass transfer coefficient for water vapor

lchannel

length of flow channel

NSO3

number of sulfonic acid residues in membrane

Nw m

water content in membrane

Pw

partial pressure of water

Pw o

vapor pressure of water

R

gas constant

Rint

internal resistance for fuel cell membrane electrode assembly

RL

external load resistance

T

temperature

V

voltage drop across the load

Vg

gas flow volume at fuel cell electrodes

Vb

battery voltage for fuel cell

Voc

open circuit voltage of fuel cell

Vop

activation polarization overpotential

λ

number of water molecules per sulfonic acid residue

Ï„R

residence time of fuel cell

Ï„D

characteristic diffusion time

Ï„i

characteristic time constants

F

Faraday’s constant

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media LLC 2009

About this chapter

Cite this chapter

Benziger, J. (2009). Reactor Dynamics of PEM Fuel Cells. In: Paddison, S.J., Promislow, K.S. (eds) Device and Materials Modeling in PEM Fuel Cells. Topics in Applied Physics, vol 113. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78691-9_4

Download citation

Publish with us

Policies and ethics