Advertisement

Catalyst Layer Operation in PEM Fuel Cells: From Structural Pictures to Tractable Models

  • B. Andreaus
  • M. Eikerling
Part of the Topics in Applied Physics book series (TAP, volume 113)

Catalyst Layers: The Pacemakers

While the membrane represents the heart of the fuel cell, determining the type of cell and feasible operating conditions, the two catalyst layers are its pacemakers. They fix the rates of electrochemical conversion of reactants. The anode catalyst layer (ACL) separates hydrogen or hydrocarbon fuels into protons and electrons and directs them onto distinct pathways. The cathode catalyst layer (CCL) rejoins them with oxygen to form liquid water. This spatial separation of reduction and oxidation reactions enables the electrons to do work in external electrical appliances, making the Gibbs free energy of the net reaction, \(- \Delta G\)

Keywords

Fuel Cell Liquid Water Catalyst Layer Exchange Current Density Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    N.M. Marković and P.N. Ross, Surf. Sci. Rep., 45, 117–229 (2002).CrossRefGoogle Scholar
  2. [2]
    K. Krischer, in: Modern Aspects of Electrochemistry, 32, 1–142, B.E. Conway, J. o'M. Bockris, and R.E. White, Editors, Plenum Press, New York (1999).Google Scholar
  3. [3]
    K. Krischer and H. Varela, in: Handbook of Fuel Cells, 2, 679–701, W. Vielstich, A. Lamm, and H. Gasteiger, Editors, John Wiley & Sons, Ltd, New York (2003).Google Scholar
  4. [4]
    F. Hajbolouri, B. Andreaus, G.G. Scherer, and A. Wokaun, Fuel Cells, 4, 160–168 (2004).CrossRefGoogle Scholar
  5. [5]
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and J. Jónsson, J. Phys. Chem. B, 108, 17886–17892 (2004).CrossRefGoogle Scholar
  6. [6]
    B. Hammer, Y. Morikawa, and J.K. Nørskov, Phys. Rev. Lett., 76, 2141–2144 (1996).CrossRefGoogle Scholar
  7. [7]
    T.R. Ralph and M.P. Hogarth, Platinum Metals Rev., 46, 3–14 (2002).Google Scholar
  8. [8]
    H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D.P. Wilkinson, J. Power Sources, 155, 95–110 (2006).Google Scholar
  9. [9]
    S. Torquato, Random Heterogeneous Materials, Springer, New York (2002).MATHCrossRefGoogle Scholar
  10. [10]
    G.W. Milton, The Theory of Composites, Cambridge University Press, New York (2002).MATHCrossRefGoogle Scholar
  11. [11]
    A. Havránek and K. Wippermann, J. Electroanal. Chem., 567, 305–315 (2004).CrossRefGoogle Scholar
  12. [12]
    T. Navessin, M. Eikerling, Q. Wang, D. Song, Zh. Liu, J. Horsfall, and K. Lovell, J. Electrochem. Soc., 152, A796–A805 (2005).CrossRefGoogle Scholar
  13. [13]
    Q. Wang, M. Eikerling, D. Song, S. Liu, T. Navessin, Z. Xie, and S. Holdcroft, J. Electrochem. Soc., 151, A950–A957 (2004).CrossRefGoogle Scholar
  14. [14]
    Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, and S. Holdcroft, J. Electrochem. Soc., 152, A1171–A1179 (2005).CrossRefGoogle Scholar
  15. [15]
    D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, and S. Holdcroft, Electrochim. Acta, 50, 3347–3358 (2005).CrossRefGoogle Scholar
  16. [16]
    M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc., 139, L28–L30 (1992).CrossRefGoogle Scholar
  17. [17]
    M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, Physical Modeling of Cell Components, Cells and Stacks, in: Encyclopedia of Electrochemistry, Volume 5: Electrochemical Engineering, Editors by Digby D. Macdonald and P. Schmuki, chapter 8.2, p. 447–543, VCH-Wiley, Weinheim, (2007).Google Scholar
  18. [18]
    M. Eikerling and A.A. Kornyshev, J. Electroanal. Chem., 453, 89–106 (1998).CrossRefGoogle Scholar
  19. [19]
    M. Eikerling, A.A. Kornyshev, and A.S. Ioselevich, Fuel Cells, 4, 131–140 (2004).CrossRefGoogle Scholar
  20. [20]
    F. Jaouen, G. Lindbergh, and G. Sundholm, J. Electrochem. Soc., 149, A437–A447 (2002).CrossRefGoogle Scholar
  21. [21]
    J. Ihonen, F. Jaouen, G. Lindbergh, A. Lundblad, and G. Sundholm, J. Electrochem. Soc., 149, A448–A454 (2002).CrossRefGoogle Scholar
  22. [22]
    M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142, 463–468 (1995).CrossRefGoogle Scholar
  23. [23]
    M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142 , 4143–4149 (1995).CrossRefGoogle Scholar
  24. [24]
    R.E. Baltus, J. Membrane Sci., 123, 165–184 (1997).CrossRefGoogle Scholar
  25. [25]
    M. Eikerling, J. Electrochem. Soc., 153, E58–E70 (2006).Google Scholar
  26. [26]
    R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, Oxford (2001).Google Scholar
  27. [27]
    A.M. Kuznetsov and J. Ulstrup, Electron Transfer in Chemistry and Biology, Wiley & Sons, Chichester (1999).Google Scholar
  28. [28]
    A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2 nd Edition, Wiley-VCH, Weinheim (2001).Google Scholar
  29. [29]
    W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford (1996).Google Scholar
  30. [30]
    P.N. Ross, in: Handbook of Fuel Cells, 2, 465–480, W. Vielstich, A. Lamm, and H. Gasteiger, Editors, John Wiley & Sons, Ltd, New York (2003).Google Scholar
  31. [31]
    S. Mukerjee and S. Srinivasan, in: Handbook of Fuel Cells, 2, 465–480, W. Vielstich, A. Lamm, and H. Gasteiger, Editors, John Wiley & Sons, Ltd, New York (2003).Google Scholar
  32. [32]
    P. Waszczuk, A. Crown, S. Mitrovski and A. Wieckowski, in: Handbook of Fuel Cells, 2, 465–480, W. Vielstich, A. Lamm, and H. Gasteiger, Editors, John Wiley & Sons, Ltd, New York (2003).Google Scholar
  33. [33]
    A. Wieckowski, E.R. Savinova, and C.G. Vayennas, Editors, Catalysis and Electrocatalysis at Nanoparticle Surfaces, Marcel Dekker, New York (2003).CrossRefGoogle Scholar
  34. [34]
    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, and U. Stimming, Faraday Discuss., 125, 357–377 (2004).CrossRefGoogle Scholar
  35. [35]
    W. Romanowski, Surf. Sci., 18, 373–388 (1969).CrossRefGoogle Scholar
  36. [36]
    U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Marković, and P.N. Ross, J. Phys. Chem. B, 106, 4181–4191 (2002).CrossRefGoogle Scholar
  37. [37]
    K. Kinoshita, J. Electrochem. Soc., 137, 845–848 (1990).CrossRefGoogle Scholar
  38. [38]
    R. van Hardeveld and F. Hartog, Surf. Sci., 15, 189–230 (1969).CrossRefGoogle Scholar
  39. [39]
    Q. Wang, M. Eikerling, D. Song, and S. Liu, J. Electroanal. Chem., 573, 61–69 (2004).CrossRefGoogle Scholar
  40. [40]
    M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 275–283 (1975).CrossRefGoogle Scholar
  41. [41]
    S. Mukerjee, in: Catalysis and Electrocatalysis at Nanoparticle Surfaces, 501–530, A. Wieckowski, E.R. Savinova, and C.G. Vayenas, Editors, Marcel Dekker, New York (2003).Google Scholar
  42. [42]
    M. Eikerling, J. Meier, and U. Stimming, Z. Phys. Chem., 217, 395–414 (2003).CrossRefGoogle Scholar
  43. [43]
    M. Peuckert, T. Yoneda, and R.A. Dalla Betta, J. Electrochem. Soc., 133, 944–947 (1986).CrossRefGoogle Scholar
  44. [44]
    A. Kabbabi, F. Gloaguen, F. Andolfatto, and R. Durand, J. Electroanal. Chem., 373, 251–254 (1994).CrossRefGoogle Scholar
  45. [45]
    T. Frelink, W. Visscher, and J.A.R. Van Veen,J. Electroanal. Chem., 382, 65–72 (1995).CrossRefGoogle Scholar
  46. [46]
    S. Gilman, J. Phys. Chem., 68, 70–80 (1964).CrossRefGoogle Scholar
  47. [47]
    J. Narayanasamy and A.B. Anderson, J. Electroanal. Chem., 554–555, 35–40 (2003).Google Scholar
  48. [48]
    C. Saravanan, B.D. Dunietz, N.M. Marković, G.A. Somorjai, P.N. Ross, and M. Head-Gordon, J. Electroanal. Chem., 554–555, 459–465 (2003).Google Scholar
  49. [49]
    T.E. Shubina, Ch. Hartnig, and M.T.M. Koper, Phys. Chem. Chem. Phys., 6, 4215–4221 (2004).CrossRefGoogle Scholar
  50. [50]
    J.S. Luo, R.G. Tobin, D.K. Lambert, G.B. Fisher, and C.L. DiMaggio, Surf. Sci., 274, 53–62 (1992).CrossRefGoogle Scholar
  51. [51]
    N.M. Marković, B.N. Grgur, C.A. Lucas, and P.N. Ross,J. Phys. Chem. B, 103, 487–495 (1999).CrossRefGoogle Scholar
  52. [52]
    N.P. Lebedeva, A. Rodes, J.M. Feliu, M.T.M. Koper, and R.A. van Santen, J. Phys. Chem. B, 106, 9863–9872 (2002).CrossRefGoogle Scholar
  53. [53]
    B. Hammer, O.H. Nielsen, and J.K. Nørskov, Catal. Lett., 46, 31–35 (1997).CrossRefGoogle Scholar
  54. [54]
    B. Hammer and J.K. Nørskov, Adv. Catal., 45, 71 (2000).CrossRefGoogle Scholar
  55. [55]
    N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, and R.A. van Santen, J. Phys. Chem. B, 106, 12938–12947 (2002).CrossRefGoogle Scholar
  56. [56]
    B. Poelsema, L.K. Verheij, and G. Comsa, Phys. Rev. Lett., 49, 1731–1735 (1982).CrossRefGoogle Scholar
  57. [57]
    J.E. Reutt-Robey, D.J. Doren, Y.J. Chabal, and S.B. Christman, J. Chem. Phys., 93, 9113–9129 (1990).CrossRefGoogle Scholar
  58. [58]
    L.R. Becerra, C.A. Klug, C.P. Slichter, and J.H. Sinfelt, J. Phys. Chem., 97, 12014–12019 (1993).CrossRefGoogle Scholar
  59. [59]
    V.P. Zhdanov and B. Kasemo, Surf. Sci. Rep., 39, 25–104 (2000).CrossRefGoogle Scholar
  60. [60]
    V.P. Zhdanov and B. Kasemo, Surf. Sci., 545, 109–121 (2003).CrossRefGoogle Scholar
  61. [61]
    M.T.M. Koper, A.P.J. Jansen, R.A. van Santen, J.J. Lukkien, and P.A.J. Hilbers, J. Chem. Phys., 109, 6051–6062 (1998).CrossRefGoogle Scholar
  62. [62]
    B. Andreaus, F. Maillard, J. Kocylo, E. Savinova, and M. Eikerling, J. Phys. Chem. B, 110, 21028–21040 (2006).Google Scholar
  63. [63]
    A.V. Petukhov, Chem. Phys. Lett., 277, 539–544 (1997).CrossRefGoogle Scholar
  64. [64]
    M. Bergelin, E. Herrero, J.M. Feliu, and M. Wasberg, J. Electroanal. Chem., 467, 74–84 (1999).CrossRefGoogle Scholar
  65. [65]
    C. Saravanan, N.M. Markovic, M. Head-Gordon, and P.N. Ross, J. Chem. Phys., 114, 6404–6412 (2001).CrossRefGoogle Scholar
  66. [66]
    D.T. Gillespie, J. Comp. Phys., 22, 403–434 (1976).MathSciNetCrossRefGoogle Scholar
  67. [67]
    K. Binder, in: Monte Carlo Methods in Statistical Physics, Topic in Current Physics, 7, K. Binder, Editor, Springer, Berlin (1986).Google Scholar
  68. [68]
    J.P. Ansermet, PH.D. Thesis, University of Illinois (1985).Google Scholar
  69. [69]
    R. Schuster and G. Ertl, in: Catalysis and Electrocatalysis at Nanoparticle Surfaces, 211–238, A. Wieckowski, E.R. Savinova, and C.G. Vayenas, Editors, Marcel Dekker, New York (2003).Google Scholar
  70. [70]
    N.P. Siegel, M.W. Ellis, D.J. Nelson, and M.R. Spakovsky, J. Power Sources, 115, 81–89 (2003).CrossRefGoogle Scholar
  71. [71]
    T. Navessin, X. Zhong, private communication (2005).Google Scholar
  72. [72]
    A. Parthasarathy, S. Srinivasan, A.J. Appleby, and C.R. Martin, J. Electrochem. Soc., 139, 2530–2537 (1992).CrossRefGoogle Scholar
  73. [73]
    R.S. Eisenberg, (Review), J. Membrane Biol., 171, 1–24 (1999).Google Scholar
  74. [74]
    A.E. Cárdenas, R.D. Coalson, and M.G. Kurnikova, Biophys. J., 79, 80–93 (2000).CrossRefGoogle Scholar
  75. [75]
    B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J., 84, 3594–3606 (2003).CrossRefGoogle Scholar
  76. [76]
    H. Scott, Elements of Chemical Reaction Engineering, 2 nd Edition, 615, Prentice-Hall, New Jersey (1992).Google Scholar
  77. [77]
    R.P. Iczkowski and M.P. Cutlip, J. Electrochem. Soc., 127, 1433–1440 (1980).CrossRefGoogle Scholar
  78. [78]
    M.L. Perry, J. Newman, and E.J. Cairns, J. Electrochem. Soc., 145, 5–15 (1998).CrossRefGoogle Scholar
  79. [79]
    A.N. Frumkin, Zh. Fiz. Khim., 23, 1477 (1949).Google Scholar
  80. [80]
    O.S. Ksenzhek and V.V. Stender, Dokl. A NSSSR, 107, 280 (1956).Google Scholar
  81. [81]
    Yu.A. Chizmadzev and Yu.G. Chirkov, Electrodics: Transport, in: Comprehensive Treatise of Electrochemistry, 6(5), 317–391, J. o'M. Bockris, Yu.A. Chizmadzhev, B.E. Conway, S.U.M. Khan, S. Sarangapani, S. Srinivasan, R.E. White, and E. Yeager, Editors, Plenum Press, New York, (1983).Google Scholar
  82. [82]
    I. Rousar, K. Micka, and A. Kimla, Electrochemical Engineering II, Part F, Elsevier, Amsterdam (1986).Google Scholar
  83. [83]
    K. Mund and F.V. Sturm, Electrochim. Acta, 20, 463–467 (1975).CrossRefGoogle Scholar
  84. [84]
    T.E. Springer, M.S. Wilson, and S. Gottesfeld, J. Electrochem. Soc., 140, 3513–3526 (1993).CrossRefGoogle Scholar
  85. [85]
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2 nd Edition, Taylor & Francis, London (1994).Google Scholar
  86. [86]
    V.N. Ambegaokar, B.I. Halperin, and J.S. Langer, Phys. Rev. B, 4, 2612–2620 (1971).CrossRefGoogle Scholar
  87. [87]
    W. Kast and C.R. Hohenthanner, Int. J. Heat Mass Transfer, 43, 807–823 (2000).MATHCrossRefGoogle Scholar
  88. [88]
    A.G. Hunt and R.P. Ewing, Soil. Sci. Soc. Am. J., 67, 1701–1702 (2003).CrossRefGoogle Scholar
  89. [89]
    P. Moldrup, T. Olesen, T. Komatsu, P. Schjonning, and D.E. Rolston, Soil. Sci. Soc. Am. J., 65, 613–623 (2001).CrossRefGoogle Scholar
  90. [90]
    F.A.L. Dullien, Porous Media, Academic Press, New York (1979).Google Scholar
  91. [91]
    A.S. Ioselevich, A.A. Kornyshev, and W. Lehnert, Solid State Ionics, 124, 221–237 (1999).CrossRefGoogle Scholar
  92. [92]
    P.C. Reeves and M.A. Celia, Water Resour. Res., 32, 2345–2358 (1996).CrossRefGoogle Scholar
  93. [93]
    M. Eikerling and A.A. Kornyshev,J. Electroanal. Chem., 475, 107–123 (1999).CrossRefGoogle Scholar
  94. [94]
    S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, and T.H. Lee, Electrochim. Acta, 43, 3693–3701 (1998).CrossRefGoogle Scholar
  95. [95]
    E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi, Electrochim. Acta, 46, 799–805 (2001).CrossRefGoogle Scholar
  96. [96]
    M.K. Debe, in: Handbook of Fuel Cells: Fundamentals, Technology, and Applications, 3, 576–589, W. Vielstich, A. Lamm, and H. Gasteiger, Editors, John Wiley & Sons, Ltd, New York (2003).Google Scholar
  97. [97]
    M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, The Fuel Cell Review, Dec. 2004/Jan. 2005, 15–25.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Andreaus
    • 1
  • M. Eikerling
    • 2
  1. 1.Institute for Fuel Cell Innovation National Research Council CanadaVancouverCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations