Advertisement

Modeling Electrocatalytic Reaction Systems from First Principles

  • Sally A. Wasileski
  • Christopher D. Taylor
  • Matthew Neurock
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

Electrocatalytic reaction systems demonstrate markedly different behavior than those carried out in the vapor phase or under ultrahigh vacuum conditions. The differences in reactivity can be attributed to the significant difference between the reaction environment of the electrocatalytic system which includes the presence of solution, electrolyte, and intrinsic as well as extrinsic potentials, in addition to the vapor phase system. The solution environment and the applied potential can stabilize or destabilize charge transfer events, thus influencing many of the physicochemical processes that occur at the surface of a working electrode and strongly impacting the activity, as well as the selectivity of the active catalyst. For example, the hydrogen-bonding character of water stabilizes charge on reactant, product, and transition states to varying extents and thereby influences both the thermodynamic, as well as the intrinsic kinetics. Such charge stabilization will enhance...

Keywords

Reaction Energy External Charge Electrocatalytic Reaction Metal Work Function Vacuum Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Weaver, M. J., Zou, S., Chan, H. Y. H., Anal. Chem., 71 38A (2000).Google Scholar
  2. [2]
    Iwasita, T., Nart, F. C., Prog. Surf. Sci., 55 271 (1997).CrossRefGoogle Scholar
  3. [3]
    Osawa, M., Topics in Appl. Phys., 81 163 (2001).CrossRefGoogle Scholar
  4. [4]
    Tadjeddine, A., Peremans, A., J. Electroanal. Chem., 409 115 (1996).CrossRefGoogle Scholar
  5. [5]
    Villegas, I., Weaver, M. J., J. Chem. Phys., 101 1648 (1994).CrossRefGoogle Scholar
  6. [6]
    Tao, N. J., Li, C. Z., He, H. X., J. Electroanal. Chem., 492 81 (2000).CrossRefGoogle Scholar
  7. [7]
    Bewick, A., Kunimatsu, K., Surf. Sci., 101 131 (1980).CrossRefGoogle Scholar
  8. [8]
    Cruickshank, B. J., Sneddon, D. D., Gewirth, A. A., Surf. Sci. Lett., 281 308 (1993).CrossRefGoogle Scholar
  9. [9]
    Kunze, J., Maurice, V., Klein, L. H., Strehblow, H.-H., Marcus, P., Corrosion Sci., 46 245 (2004).CrossRefGoogle Scholar
  10. [10]
    Niaura, G., Electrochim. Acta, 45 3507 (2000).CrossRefGoogle Scholar
  11. [11]
    Wilms, M., Broekmann, P., Stuhlmann, C., Wandelt, K., Surf. Sci., 416 121 (1998).CrossRefGoogle Scholar
  12. [12]
    van Saten, R. A., Neurock, M., Catal. Rev. Sci.-Eng., 37 357 (1995).Google Scholar
  13. [13]
    Hammer, B., Norksov, J. K., Adv. Catal., 45 71 (2000).CrossRefGoogle Scholar
  14. [14]
    Hammer, B., Morikawa, Y., Norksov, J. K., Phys. Rev. Lett., 76 2141 (1996).CrossRefGoogle Scholar
  15. [15]
    Desai, S. K., Neurock, M., Kourtakis, K., J. Phys. Chem. B, 106 2559 (2002).CrossRefGoogle Scholar
  16. [16]
    Greeley, J., Mavrikakis, M., J. Am. Chem. Soc., 124 7193 (2002).CrossRefGoogle Scholar
  17. [17]
    Greeley, J., Mavrikakis, M., J. Am. Chem. Soc., 126 3910 (2004).CrossRefGoogle Scholar
  18. [18]
    Loffreda, D., Simon, D., Sautet, P., Surf. Sci., 425 68 (1999).CrossRefGoogle Scholar
  19. [19]
    Eichler, A., Hafter, J., J. Chem. Phys., 109 5585 (1998).CrossRefGoogle Scholar
  20. [20]
    Toney, M. F., Howard, J. N., Richer, J., Borges, G. L., Nature, 368 444 (1994).CrossRefGoogle Scholar
  21. [21]
    Halley, J. W., Mazzolo, A., Zhou, Y., Price, D., J. Electroanal. Chem., 450 273 (1998).CrossRefGoogle Scholar
  22. [22]
    Halley, J. W., Smith, B. B., Walbren, S., Curtiss, L. A., Rigney, R. O., Sutjianto, A., Hung, N. C., Yonco, R. M., Nagy, Z., J. Chem. Phys., 110 6538 (1999).CrossRefGoogle Scholar
  23. [23]
    Desai, S. K., Pallassana, V., Neurock, M., J. Phys. Chem. B, 105 9171 (2001).CrossRefGoogle Scholar
  24. [24]
    Neurock, M., Wasileski, S. A., Mei, D., Chem. Eng. Sci., 59 4703 (2004).CrossRefGoogle Scholar
  25. [25]
    Cao, D., Lu, G.-Q., Wieckowski, A., Wasileski, S. A., Neurock, M., J. Phys. Chem. B, 109 11622 (2005).CrossRefGoogle Scholar
  26. [26]
    Taylor, C. D., Wasileski, S. A., Fanjoy, J. W., Filhol, J.-S., Neurock, M., Phys. Rev. B, 73 165402 (2006).Google Scholar
  27. [27]
    Anderson, A. B., Surf. Sci., 105 159 (1981).CrossRefGoogle Scholar
  28. [28]
    Halley, J. W., Johnson, B., Price, D., Schwalm, M., Phys. Rev. B, 31 7695 (1985).CrossRefGoogle Scholar
  29. [29]
    Halley, J. W., Price, D., Phys. Rev. B, 35 9095 (1987).CrossRefGoogle Scholar
  30. [30]
    Head-Gordon, M., Tully, M., Electrochim. Acta, 175 37 (1993).Google Scholar
  31. [31]
    Illas, F., Mele, F., Curulla, D., Clotet, A., Ricart, J. M., Electrochim. Acta, 44 1213 (1998).CrossRefGoogle Scholar
  32. [32]
    Albu, T. V., Anderson, A. B., Electrochim. Acta, 46 3001 (2001).CrossRefGoogle Scholar
  33. [33]
    Wasileski, S. A., Koper, M. T. M., Weaver, M. J., J. Am. Chem. Soc., 124 2796 (2002).CrossRefGoogle Scholar
  34. [34]
    Anderson, A. B., Electrochim. Acta, 48 3743 (2003).CrossRefGoogle Scholar
  35. [35]
    Nørksov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., Jonsson, H., J. Phys. Chem. B, 108 17886 (2004).CrossRefGoogle Scholar
  36. [36]
    Theil, P. A., Madey, T. E., Surf. Sci. Rep., 7 211 (1987).CrossRefGoogle Scholar
  37. [37]
    Henderson, M. A., Surf. Sci. Rep., 46 1 (2002).CrossRefGoogle Scholar
  38. [38]
    Michaelides, A., Alavi, A., King, D. A., J. Am. Chem. Soc., 125 2746 (2003).CrossRefGoogle Scholar
  39. [39]
    Michaelides, A., Ranea, V. A., de Andres, P. L., King, D. A., Phys. Rev. Lett., 90 216102 (2003).CrossRefGoogle Scholar
  40. [40]
    Desai, S. K., Neurock, M., Phys. Rev. B, 68 75420 (2003).CrossRefGoogle Scholar
  41. [41]
    Wagner, F. T., Moylan, T. E., Surf. Sci., 206 187 (1988).CrossRefGoogle Scholar
  42. [42]
    Kizhakevariam, N., Stuve, E., Surf. Sci., 275 223 (1992).CrossRefGoogle Scholar
  43. [43]
    Desai, S. K., Neurock, M., unpublished results (2001).Google Scholar
  44. [44]
    Wasileski, S. A., Neurock, M., unpublished results, (2005).Google Scholar
  45. [45]
    Vassilev, P., Koper, M. T. M., van Saten, R. A., Chem. Phys. Lett., 359 337 (2002).CrossRefGoogle Scholar
  46. [46]
    Filhol, J.-S., Neurock, M., Angew. Chemie Int. Ed., accepted, 2005.Google Scholar
  47. [47]
    Okamoto, Y., Sugino, O., Mochizuki, Y., Ikeshoji, T., Morikawa, Y., Chem. Phys. Lett., 377 236 (2003).CrossRefGoogle Scholar
  48. [48]
    Bard, A. J., Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, (1980).Google Scholar
  49. [49]
    Anderson, A. B., J. Chem. Phys., 62 1187 (1975).CrossRefGoogle Scholar
  50. [50]
    Anderson, A. B., Int. J. Quant. Chem., 49 581 (1994).CrossRefGoogle Scholar
  51. [51]
    Marcus, R. A., J. Chem. Phys., 24 966 (1956).CrossRefGoogle Scholar
  52. [52]
    Anderson, A. B., J. Electrochem. Soc., 147 4229 (2002).CrossRefGoogle Scholar
  53. [53]
    Anderson, A. B., Neshev, N. M., Sidik, R. A., Shiller, P., Electrochim. Acta, 47 2999 (2002).CrossRefGoogle Scholar
  54. [54]
    Anderson, A. B., Sidik, R. A., Narayanasamy, J., J. Phys. Chem. B, 107 4618 (2003).CrossRefGoogle Scholar
  55. [55]
    Price, D. L., Halley, J. W., J. Chem. Phys., 102 6603 (1995).CrossRefGoogle Scholar
  56. [56]
    Koper, M. T. M., van Saten, R. A., J. Electroanal. Chem., 476 64 (1999).CrossRefGoogle Scholar
  57. [57]
    Koper, M. T. M., van Saten, R. A., J. Electroanal. Chem., 472 126 (1999).CrossRefGoogle Scholar
  58. [58]
    Patrito, E. M., Paredes-Olivera, P., Surf. Sci., 527 149 (2003).CrossRefGoogle Scholar
  59. [59]
    Paredes-Olivera, P., Patrito, E. M., J. Phys. Chem. B, 105 7227 (2001).CrossRefGoogle Scholar
  60. [60]
    Koper, M. T. M., Modern Aspects of Electrochemistry, 36 51 (2003).CrossRefGoogle Scholar
  61. [61]
    Dominguez-Ariza, D., Hartnig, C., Sousa, C., Illas, F., J. Chem. Phys., 121 1066 (2004).CrossRefGoogle Scholar
  62. [62]
    Rossmeisl, J., J.K. Nørskov, C. Taylor and M. Neurock, J. Phys. Chem. B, 110 21833.Google Scholar
  63. [63]
    Lozovoi, A. Y., Alavi, A., Kohanoff, J., Lynden-Bell, R. M., J. Chem. Phys., 115 1661 (2001).CrossRefGoogle Scholar
  64. [64]
    Sanchez, C. G., Lozovoi, A. Y., Alavi, A., Mol. Phys., 102 1045 (2004).CrossRefGoogle Scholar
  65. [65]
    Wagner, F. T. In Structure of Electrified Interfaces; Lipkowski, J., Ross, P., Eds.; VDH Publishers: New York, (1993).Google Scholar
  66. [66]
    Taylor, C. D., Neurock, M., Curr. Opin. Solid State Mater. Sci., 9 49 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sally A. Wasileski
    • 1
  • Christopher D. Taylor
  • Matthew Neurock
  1. 1.Department of ChemistryUniversity of North Carolina at AshevilleAsheville

Personalised recommendations