Advertisement

Multi-Scale Modeling of CO Oxidation on Pt-Based Electrocatalysts

  • Chandra Saravanan
  • N. M. Markovic
  • M. Head-Gordon
  • P. N. Ross
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

A serious limitation of modern low-temperature fuel cells is the use of highly purified H\(_2\)

Keywords

Density Functional Theory Sulfuric Acid Solution Kinetic Monte Carlo Anion Adsorption Kinetic Monte Carlo Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).CrossRefGoogle Scholar
  2. [2]
    N. M. Markovic and P. N. Ross, Cat. Tech. 4, 110 (2000).Google Scholar
  3. [3]
    J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. H. Litt, J. Electrochem. Soc. 142, L121 (1995).CrossRefGoogle Scholar
  4. [4]
    R. F. Savinell, M. H. Litt, J. T. Wang and H. Yu, Electrochim. Acta 41, 193 (1996).CrossRefGoogle Scholar
  5. [5]
    E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Nature 280, 1735 (1998).Google Scholar
  6. [6]
    N. M. Markovic, C. A. Lucas, A. Rhodes, V. Stamankovic, and P. N. Ross, Surf. Sci. 499, L149 (2002).CrossRefGoogle Scholar
  7. [7]
    I. M. Tidswell, N. M. Markovic, and P. N. Ross, Phys. Rev. Lett 71, 1601 (1993).CrossRefGoogle Scholar
  8. [8]
    B. M. Ocko, J. X. Wang, and T. Wandlowski, Phys. Rev. Lett 79, 1511 (1997).CrossRefGoogle Scholar
  9. [9]
    I. Villegas and M. J. Weaver, J. Chem. Phys. 101, 1648 (1994).CrossRefGoogle Scholar
  10. [10]
    I. Villegas, X. Gao, and M. J. Weaver, Electrochim. Acta 40, 1267 (1995).CrossRefGoogle Scholar
  11. [11]
    S. Baldelli, N. Markovic, P. N. Ross, Y. R. Shen, and G. A. Somorjai, J. Phys. Chem. B 103, 8920 (1999).CrossRefGoogle Scholar
  12. [12]
    S. Hoffer, S. Baldelli, K. Chou, P. N. Ross, and G. A. Somorjai, J. Phys. Chem. B 106, 6473 (2002).CrossRefGoogle Scholar
  13. [13]
    Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc. 124, 468 (2002).CrossRefGoogle Scholar
  14. [14]
    W. F. Lin, M. S. Zei, and G. Ertl, Chem. Phys. Lett. 312, 1 (1999).CrossRefGoogle Scholar
  15. [15]
    P. J. Feibelman, B. Hammer, J. K. Norskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Phys. Chem. B 105, 4018 (2001).CrossRefGoogle Scholar
  16. [16]
    A. B. Anderson and E. Grantscharova, J. Phys. Chem. 99, 9149 (1995).CrossRefGoogle Scholar
  17. [17]
    A. B. Anderson and N. M. Neshev, J. Elec. Chem. Soc. 149, E383 (2002).CrossRefGoogle Scholar
  18. [18]
    C. Saravanan, B. Dunietz, N. Markovic, M. Head-Gordon, and P. Ross, J. Electroanal. Chem. 554–555, 459 (2003).Google Scholar
  19. [19]
    M. T. M. Koper, T. E. Shubina, and R. A. van Santen, J. Phys. Chem. B 106, 686 (2002).CrossRefGoogle Scholar
  20. [20]
    M. T. M. Koper, R. A. van Santen, S. A. Wasileski, and M. J. Weaver, J. Chem. Phys. 113, 4392 (2000).CrossRefGoogle Scholar
  21. [21]
    E. Christofferson, P. Liu, A. Ruben, H. L. Skriver, and J. K. Norskov, J. Catal. 199, 123 (2001).CrossRefGoogle Scholar
  22. [22]
    A. Calhoun and G. A. Voth, J. Electroanal. Chem. 450, 253 (1998).CrossRefGoogle Scholar
  23. [23]
    J. W. Halley, A. Mazzolo, Y. Zhou, and D. Price, J. Electroanal. Chem. 450, 273 (1998).CrossRefGoogle Scholar
  24. [24]
    J. Hautman, J. W. Halley, and Y. J. Rhee, J. Chem. Phys. 91, 467 (1989).CrossRefGoogle Scholar
  25. [25]
    C. Saravanan, M. T. M. Koper, N. Markovic, M. Head-Gordon, and P. Ross, Phys. Chem. Chem. Phys. 4, 2660 (2002).CrossRefGoogle Scholar
  26. [26]
    M. T. M. Koper, A. P. J. Jansen, R. A. van Santen, J. J. Lukkien, and P. A. J. Hilbers, J. Chem. Phys. 109, 6051 (1998).CrossRefGoogle Scholar
  27. [27]
    A. V. Petukhov, W. Akemann, K. A. Friedrich, and U. Stimming, Surf. Sci. 404, 182 (1998).CrossRefGoogle Scholar
  28. [28]
    J. Zhang, Y. Sung, P. A. Rikvold, and A. Wieckowski, J. Chem. Phys. 94, 6887 (1996).Google Scholar
  29. [29]
    P. A. Rikvold, J. Zhang, Y.-E. Sung, and A. Wieckowski, J. Chem. Phys. 94, 6887 (1996).Google Scholar
  30. [30]
    L. Blum and D. A. Huckaby, J. Electroanal. Chem. 375, 69 (1994).CrossRefGoogle Scholar
  31. [31]
    D. G. Vlachos, AIChE J. 43, 3031 (1997).CrossRefGoogle Scholar
  32. [32]
    A. B. Anderson and E. Grantscharova, J. Phys. Chem. 99, 9144 (1995).Google Scholar
  33. [33]
    A. B. Anderson and T. V. Albu, J. Am. Chem. Soc. 121, 11855 (1999).CrossRefGoogle Scholar
  34. [34]
    P. Gilman, J. Phys. Chem. 68, 70 (1964).CrossRefGoogle Scholar
  35. [35]
    H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, J. Phys. Chem. 98, 617 (1994).CrossRefGoogle Scholar
  36. [36]
    T. E. Shubina, C. Hartnig, and M. T. M. Koper, Phys. Chem. Chem. Phys. 6, 4215 (2004).CrossRefGoogle Scholar
  37. [37]
    D. L. Price and J. W. Halley, J. Chem. Phys. 102, 6603 (1995).CrossRefGoogle Scholar
  38. [38]
    A. B. Anderson and D. B. Kang, J. Am. Chem. Soc. 102, 5993 (1998).Google Scholar
  39. [39]
    X. Crespin, V. M. Geskin, C. Bureau, R. Lazzaroni, W. Schmickler, and J. L. Bredas, J. Chem. Phys. 115, 10493 (2001).CrossRefGoogle Scholar
  40. [40]
    H. Nakatsuji, J. Chem. Phys. 87, 4995 (1987).CrossRefGoogle Scholar
  41. [41]
    P. S. Bagus, C. J. Nelin, W. Muller, M. R. Philpott, and H. Seki, Phys. Rev. Lett. 58, 559 (1987).CrossRefGoogle Scholar
  42. [42]
    M. Head-Gordon and J. C. Tully, Chem. Phys. 175, 37 (1993).CrossRefGoogle Scholar
  43. [43]
    P. Liu, A. Logadottir, and J. K. Norskov, Electrochim. Acta 48, 3731 (2003).CrossRefGoogle Scholar
  44. [44]
    W. Schmickler, Interfacial Electrochemistry (Oxford University Press, New York, 1996).Google Scholar
  45. [45]
    A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications (Wiley, New York, 1980).Google Scholar
  46. [46]
    A. Becke, J. Chem. Phys. 98, 1372 (1993).CrossRefGoogle Scholar
  47. [47]
    A. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  48. [48]
    W. R. Wadt and J. P. Hay, J. Chem. Phys. 82, 299 (1985).CrossRefGoogle Scholar
  49. [49]
    J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, T. R. Furlani, M. S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, et al., J. Comp. Chem. 21, 1532 (2000).CrossRefGoogle Scholar
  50. [50]
    N. M. Markovic and P. N. Ross, Surf. Sci. Rep. 45, 121 (2002).CrossRefGoogle Scholar
  51. [51]
    C. Saravanan, N. Markovic, M. Head-Gordon, and P. Ross, J. Chem. Phys. 114, 6404 (2001).CrossRefGoogle Scholar
  52. [52]
    M. T. M. Koper and J. J. Lukkien, J. Electroanal. Chem. 485, 161 (2000).CrossRefGoogle Scholar
  53. [53]
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).Google Scholar
  54. [54]
    B. B. Smith and Halley, J. Chem. Phys. 101, 10915 (1994).CrossRefGoogle Scholar
  55. [55]
    M. T. M. Koper, J. J. Lukkien, A. P. J. Jansen, and R. A. van Santen, J. Phys. Chem. 103, 5522 (1999).Google Scholar
  56. [56]
    N. Markovic and P. N. Ross, J. Electroanal. Chem. 330, 499 (1992).CrossRefGoogle Scholar
  57. [57]
    W. Savich, S. G. Sun, J. Lipkowski, and A. Wieckowski, J. Electroanal. Chem. 388, 233 (1995).CrossRefGoogle Scholar
  58. [58]
    A. M. Funtikov, U. Stimming, and R. Vogel, J. Electroanal. Chem. 428, 147 (1997).CrossRefGoogle Scholar
  59. [59]
    C. A. Lucas, N. Markovic, and P. N. Ross, Phys. Rev. B 55, 7964 (1997).CrossRefGoogle Scholar
  60. [60]
    N. Li and J. Lipkowski, J. Electroanal. Chem. 491, 95 (2000).CrossRefGoogle Scholar
  61. [61]
    A. Kolics and A. Wieckowski, J. Phys. Chem. B 105, 2588 (2001).CrossRefGoogle Scholar
  62. [62]
    F. Kitamura, M. Takahashi, and M. Ito, Surf. Sci. 223, 497 (1989).CrossRefGoogle Scholar
  63. [63]
    M. J. Weaver, S.-C. Chang, L.-W. Leung, X.Jiang, M. Rubel, M. Szklarczyk, D. Zurawski, and A. Wieckoski, J. Electroanal. Chem. 327, 247 (1992).CrossRefGoogle Scholar
  64. [64]
    J. M. Feliu, J. M. Orts, A. Fernandez-Vega, A. Aldaz, and J. Clavilier, J. Electroanal. Chem. 296, 191 (1990).CrossRefGoogle Scholar
  65. [65]
    J. M. Orts, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, and J. Clavilier, J. Electroanal. Chem. 327, 261 (1992).CrossRefGoogle Scholar
  66. [66]
    J. Clavilier, R. Albalat, R. Gomez, J. M. Orts, J. M. Feliu, and A. Aldaz, J. Electroanal. Chem. 330, 489 (1992).CrossRefGoogle Scholar
  67. [67]
    H. Kita, H. Narumi, S. Ye, and H. Naohara, J. Appl. Electrochem. 23, 589 (1993).CrossRefGoogle Scholar
  68. [68]
    N. Markovic, N. S. Marinkovic, and R. Adzic, J. Electroanal. Chem. 214, 309 (1988).Google Scholar
  69. [69]
    P. Faguy, N. Markovic, , R. Adzic, C. Fierro, and B. Yeager, J. Electroanal. Chem. 289, 245 (1990).CrossRefGoogle Scholar
  70. [70]
    N. Markovic, N. S. Marinkovic, and R. R. Adzic, J. Electroanal. Chem. 314, 289 (1991).CrossRefGoogle Scholar
  71. [71]
    J. Clavilier, J. Electroanal. Chem. 107, 211 (1980).CrossRefGoogle Scholar
  72. [72]
    D. A. Scherson and D. M. Kolb, J. Electroanal. Chem. 176, 353 (1984).CrossRefGoogle Scholar
  73. [73]
    E. Herrero, J. M. Feliu, and A. Wieckowski, Surf. Sci. 325, 131 (1995).CrossRefGoogle Scholar
  74. [74]
    J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and A. P. J. Jansen, Phys. Rev. E 58, 2598 (1998).CrossRefGoogle Scholar
  75. [75]
    C. G. M. Hermse, A. P. van Bavel, M. T. M. Koper, J. J. Lukkien, R. A. van Santen, A. P. J. Jansen Surf. Sci. 572, 247 (2004).Google Scholar
  76. [76]
    B. E. Conway, Prog. Surf. Sci. 16, 1 (1984).CrossRefGoogle Scholar
  77. [77]
    M. T. M. Koper, J. Electroanal. Chem. 450, 189 (1998).CrossRefGoogle Scholar
  78. [78]
    S. Thomas, Y.-E. Sung, H. S. Kim, and A. Wieckowski, J. Phys. Chem. 100, 11726 (1996).CrossRefGoogle Scholar
  79. [79]
    H. Ogasawara, Y. Sawatari, I. Inukai, and M. Ito, J. Electroanal. Chem. 358, 337 (1993).CrossRefGoogle Scholar
  80. [80]
    A. M. Funtikov, U. Linke, U. Stimming, and R. Vogel, Surf. Sci. 324, L3243 (1995).CrossRefGoogle Scholar
  81. [81]
    K. Itaya, Prog. Surf. Sci. 58, 121 (1998).CrossRefGoogle Scholar
  82. [82]
    H. Angerstein-Kozlowska, B. E. Conway, A. Hamelin, and L. Stoicoviciu, J. Electroanal. Chem. 228, 429 (1987).CrossRefGoogle Scholar
  83. [83]
    Y.-E. Sung, S. Thomas, and A. Wieckowski, J. Phys. Chem. 99, 13513 (1995).CrossRefGoogle Scholar
  84. [84]
    K. Jaaf-Golze, D. M. Kolb, and D. A. Scherson, J. Electroanal. Chem. 200, 353 (1986).CrossRefGoogle Scholar
  85. [85]
    A. Bewick, M. Fleischmann, and H. R. Thirsk, Trans. Faraday. Soc. 58, 2200 (1962).CrossRefGoogle Scholar
  86. [86]
    M. Avrami, J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
  87. [87]
    M. Avrami, J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
  88. [88]
    C. Saravanan, P. Sunthar, and E. Bosco, J. Electroanal. Chem. 375, 59 (1994).CrossRefGoogle Scholar
  89. [89]
    H. A. Gasteiger, N. Markovic, and P. N. Ross, J. Phys. Chem. 98, 617 (1994).CrossRefGoogle Scholar
  90. [90]
    For a theory of variable time step Monte Carlo algorithm for time dependent rate constants the reader is referred to Ref. 51Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chandra Saravanan
  • N. M. Markovic
    • 1
  • M. Head-Gordon
  • P. N. Ross
  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeley

Personalised recommendations