Modeling of PEMFC Catalyst Layer Performance and Degradation

  • Jeremy P. Meyers
Part of the Topics in Applied Physics book series (TAP, volume 113)


The proper construction of a stable, well-dispersed, three-dimensional catalyst layer is one of the most critical determinants of performance for a PEM fuel cell. The membrane isolates the reactants from one another and provides an ionic current path from one electrode to another, and the flow fields and gas-diffusion layers distribute the reactants to the catalyst layer, but all of the relevant electrochemical reactions are carried out in the catalyst layers themselves. It is the proper construction of the so-called three-phase interface that allows the reactants and products to be brought into intimate contact and makes possible the operation of the fuel cell. Indeed, it is the tailoring of this layer by Raistrick et al. [1] in 1991 that demonstrated the practical feasibility of lowering precious metal loadings by a factor of 40 over previous designs and helped to usher in the past decade of increased activity and investment in fuel cell development.

As is common...


Fuel Cell Oxygen Reduction Reaction Catalyst Layer Porous Electrode Quantum Chemical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    I. D. Raistrick, in Proceedings of the Symposium on Diaphragms, Separators, and Ion-Exchange Membranes, (J. W. Van Zee, R. E. White, K. Kinoshita, and H. S. Burney, eds.), p. 172, The Electrochemical Society, Inc., Pennington, NJ, (1986).Google Scholar
  2. [2]
    H. Yano, C. Ono, H. Shiroishi, and T. Okada, “New CO Tolerant Electro-Eatalysts Exceeding Pt-Ru for the Anode of Fuel Cells,” Chemical Communications, 9, 1212 (2005).CrossRefGoogle Scholar
  3. [3]
    M. Mathias, H. Gasteiger, R. Makharia, S. Kocha, T. T. Xie, and J. Pisco, “Can Available Membranes and Catalysts Meet Automotive Polymer Electrolyte Fuel Cell Requirements,” 228th National Meeting of the ACS Meeting, Philadelphia, August (2004).Google Scholar
  4. [4]
    S. S. Kocha, “Principles of MEA preparation,” in Handbook of Fuel Cells- Fundamentals, Technology, and Applications, Volume 3: Fuel Cell Technology and Applications (W. Vielstich, H. A. Gasteiger, and A. Lamm, eds.) John Wiley & Sons, Ltd. New York, 2003.Google Scholar
  5. [5]
    W. R. Grove, “On a Gaseous Voltaic Battery,” Philos. Magazine J. Sci., 21, 417, (1842).MathSciNetGoogle Scholar
  6. [6]
    H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, “Activity Benchmarks and Requirements for Pt, Pt-alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs,” Appl. Catal. B: Environ., 56, 9 (2005).CrossRefGoogle Scholar
  7. [7]
    S. J. C. Cleghorn, “Developing Durable, Cost-Effective MEAs for Automotive Fuel Cells,” SAE TOPTEC Symposium, April 9, 2003, Dearborn, Michigan.
  8. [8]
    H. Tsuchiya, “Fuel Cell Cost Study by Learning Curve,” Annual Meeting of the International Energy Workshop Jointly organized by EMF/IIASA, 18−20 June 2002 at Stanford University, USA.
  9. [9]
    P. N. Ross, “Oxygen reduction reaction on smooth single crystal electrodes,” in Handbook of Fuel Cells- Fundamentals, Technology and Applications, Volume 2: Electrocatalysis. (W. Vielstich, H. A. Gasteiger, and A. Lamm, eds.) John Wiley & Sons, Ltd., New York, 2003.Google Scholar
  10. [10]
    K. Kinoshita, Electrochemical Oxygen Technology, John Wiley & Sons, Ltd., New York, 1992.Google Scholar
  11. [11]
    D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman M. E. Tisack, “Advanced Materials for Improved PEMFC Performance and Life,” J. Power Sources, 131, 41 (2004).CrossRefGoogle Scholar
  12. [12]
    R. Liu and E. Smotkin, “Array Membrane Electrode Assemblies for High Throughput Screening of Direct Methanol Fuel Cell Anode Catalysts,” J. Electroanal. Chem., 535, 49 (2002).CrossRefGoogle Scholar
  13. [13]
    M. T. M. Koper, “Numerical simulations of electrocatalytic processes,” in Handbook of Fuel Cells − fundamentals, Technology, and Applications, Volume 2: Electrocatalysis (W. Vielstich, H. A. Gasteiger, and A. Lamm, eds.), John Wiley & Sons, Ltd., New York (2004).Google Scholar
  14. [14]
    K. Vetter, Electrochemical Kinetics: Theoretical Aspects, Academic Press, New York, (1967).Google Scholar
  15. [15]
    K. Kinoshita, “Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes,” J. Electrochem. Soc., 137, 845 (1990).CrossRefGoogle Scholar
  16. [16]
    M. Peuckert, T. Yoneda, R. A. Dalla Betta, and M. Boudart, “Oxygen Reduction on Small Supported Platinum Particles,” J. Electrochem. Soc., 133, 944 (1986).CrossRefGoogle Scholar
  17. [17]
    N. Markovic, H. Gasteiger, and P. N. Ross, “Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts,” J. Electrochem. Soc., 144, 1591 (1997).CrossRefGoogle Scholar
  18. [18]
    T. E. Springer, T. Rockward, T. A. Zawodzinski, and S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed: Effects of CO, H2 Dilution, and High Fuel Utilization,” J. Electrochem. Soc., 148, A11 (2001).CrossRefGoogle Scholar
  19. [19]
    K. Broka and P. Ekdunge, “Oxygen and Hydrogen Permeation Properties and Water Uptake of Nafion 117 Membrane and Recast Film for PEM Fuel Cell,” J. Appl. Electrochem., 27 117 (1997).CrossRefGoogle Scholar
  20. [20]
    B. Pivovar, “High Temperature Polymer Electrolytes Based Upon Ionic Liquids,” DOE Hydrogen Program 2004 Progress Report, available at
  21. [21]
    M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, and A. Ohta, “Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells,” J. Electrochem. Soc., 143, 2245 (1996).CrossRefGoogle Scholar
  22. [22]
    T. R. Ralph, G. A. Hards, J. E. Keating, S. A. Campbell, D. P. Wilkinson, M. Davis, J. St-Pierre, and M. C. Johnson, “Low cost electrodes for proton exchange membrane fuel cells – Performance in single cells and Ballard stacks,” J. Electrochem. Soc., 144, 3845 (1997).CrossRefGoogle Scholar
  23. [23]
    J. Newman and W. Tiedemann, “Porous-Electrode Theory with Battery Applications,” AIChE J., 21, 41 (1975).CrossRefGoogle Scholar
  24. [24]
    J. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).Google Scholar
  25. [25]
    J. Giner and C. Hunter, “The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model,” J. Electrochem. Soc., 116, 1124 (1969).CrossRefGoogle Scholar
  26. [26]
    R. P. Iczkowski and M. B. Cutlip, “Voltage Losses in Fuel Cell Cathodes,” J. Electrochem. Soc., 127, 1433 (1980).CrossRefGoogle Scholar
  27. [27]
    A. Z. Weber, R. M. Darling, and J. Newman, “Modeling Two-Phase Behavior in PEFCs,” J. Electrochem. Soc., 151, A1715 (2004).CrossRefGoogle Scholar
  28. [28]
    D. M. Bernardi and M. W. Verbrugge, “A Mathematical Model of the Solid-Polymer Electrolyte Fuel Cell,” J. Electrochem. Soc., 139, 2477 (1992).CrossRefGoogle Scholar
  29. [29]
    T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel-Cell Model,” J. Electrochem. Soc., 138, 2334 (1991).CrossRefGoogle Scholar
  30. [30]
    J. St-Pierre, D. P. Wilkinson, S. Knights, and M. L. Bos, “Relationships between water management, contamination and lifetime degradation in PEFC,” J. New Mater. Electrochem. Systems, 3, 99 (2000).Google Scholar
  31. [31]
    R. M. Darling and J. P. Meyers, “Kinetic Model of Platinum Dissolution,” J. Electrochem. Soc., 150, A1523 (2003).CrossRefGoogle Scholar
  32. [32]
    R. M. Darling and J. P. Meyers “Mathematical Model of Platinum Movement in PEM Fuel Cells,” J. Electrochem. Soc., 152, A242 (2005).CrossRefGoogle Scholar
  33. [33]
    P. Piela, C. Eickes, E. Brosha, F. Garzon, and P. Zelenay, “Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode,” J. Electrochem. Soc., 151, A2053 (2004).CrossRefGoogle Scholar
  34. [34]
    J. Meyers and L. Protsailo, “Development of High-Temperature Membranes and Improved Cathode Catalysts,” DOE Hydrogen Program, FY 2004 Progress Report,
  35. [35]
    M. S. Wilson, F. H. Garzon, K. E. Sickafus, and S. Gottesfeld, “Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 140, 2872 (1993).CrossRefGoogle Scholar
  36. [36]
    J. Xie, D. L. Wood III, K. L. More, P. Atanassov, and R. L. Borup, “Microstructural Changes of Membrane Electrode Assemblies During PEFC Durability Testing at High Humidity Conditions,” J. Electrochem. Soc., 12, A1011 (2005).CrossRefGoogle Scholar
  37. [37]
    P. Wynblatt and N. A. Gjostein, “Particle Growth in Model Supported Metal Catalysts −I. Theory,” Metall. Acta, 24, 1165 (1976).CrossRefGoogle Scholar
  38. [38]
    B. J. McCoy, “A New Population Balance Model for Crystal Size Distributions,” Journal of Colloid and Interface Science, 240, 139 (2001).CrossRefGoogle Scholar
  39. [39]
    C. T. Campbell, S. C. Parker, and D. E. Starr, “The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering,” Science, 298, 811 (2002).CrossRefGoogle Scholar
  40. [40]
    K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons, New York (1988).Google Scholar
  41. [41]
    A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, “Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal During Fuel Starvation,” J. Power Sources, 130, 42 (2004).CrossRefGoogle Scholar
  42. [42]
    C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, “A Reverse-Current Decay Mechanism for Fuel Cells,” Electrochem. Solid-State Lett., 8, A273 (2005).CrossRefGoogle Scholar
  43. [43]
    G. Skala, “Automotive PEM Stack Freeze Requirements & Suggested Fundamental Studies,” presentation at 2005 DOE Freeze Workshop on Fuel Cell Operations at Subfreezeing Temperatures, February 1−2, 2005, Phoenix, AZ,
  44. [44]
    J. P. Meyers and R. M. Darling, “Model of Carbon Corrosion in PEM Fuel Cells,” J. Electrochem. Soc., submitted.Google Scholar
  45. [45]
    S. Burlatsky, N. Cipollini, D. Condit, T. Madden, and V. Atrazhev, “Multi-scale modeling considerations for PEM fuel cell durability,” 208th Meeting of The Electrochemical Society, Los Angeles, California, October 16-21, 2005.Google Scholar
  46. [46]
    E. Cho, J.-J. Ko, H. Y. Ha, S.-A. Hong, K.-Y. Lee, T.-W. Lim, and I.-H. Oh, “Characteristics of the PEMFC Repetitively Brought to Temperatures Below 0°C,” J. Electrochem. Soc., 150, A1667 (2003).CrossRefGoogle Scholar
  47. [47]
    J. P. Meyers, “Fundamental Issues in Subzero PEMFC Startup and Operation,” presentation at 2005 DOE Workshop on Fuel Cell Operations at Subfreezing Temperatures, February 1-2, 2005, Phoenix, Arizona.
  48. [48]
    M. Oszcipok, D. Riemann, U. Kronewett, M. Kreideweis, and M. Zedda, “Statistic Analysis of Operational Influences on the Cold Start Behaviour of PEM Fuel Cells,” J. Power Sources, 145, 407 (2005).CrossRefGoogle Scholar
  49. [49]
    A. W. Rempel, J. S. Wettlaufer, and M. G. Worster, “Premelting Dynamics in a Continuum Model of Frost Heave,” J. Fluid Mech., 498, 227 (2004).MATHCrossRefGoogle Scholar
  50. [50]
    S. He and M. Mench, “One-dimensional transient model for frost heave in polymer electrolyte fuel cells,” J. Electrochem. Soc., 153, 9, A1724 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeremy P. Meyers
    • 1
  1. 1.UTC Fuel CellsUSA

Personalised recommendations