Skip to main content

Reactivity of Bimetallic Nanoclusters Toward the Oxygen Reduction in Acid Medium

  • Chapter
Device and Materials Modeling in PEM Fuel Cells

Part of the book series: Topics in Applied Physics ((TAP,volume 113))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies Nature 2001, 414, 345–352.

    Article  Google Scholar 

  2. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Cat. B: Environmental 2005, 56, 9–35.

    Article  Google Scholar 

  3. Adzic, R. Recent advances in the kinetics of oxygen reduction. In Electrocatalysis; Lipkowski, J., Ross, P. N., Eds.; Wiley-VCH: New York, 1998, pp. 197–242.

    Google Scholar 

  4. Poirier, J. A.; Stoner, G. E. Microstructural effects on electrocatalytic oxygen reduction activvity of nano-grained thin-film Platinum in acid media. J. Electrochem. Soc. 1994, 141, 425–430.

    Article  Google Scholar 

  5. Takasu, Y.; Ohashi, N.; Zhang, X.-G.; Murakami, Y.; Minagawa, H.; Sato, S.; Yahikozawa, K. Size effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 1996, 41, 2592–2600.

    Article  Google Scholar 

  6. Peuckert, M.; Yoneda, T.; Betta, R. A. D.; Boudart, M. Oxygen reduction on small supported platinum particles. J. Electrochem. Soc. 1986, 133, 944–947.

    Article  Google Scholar 

  7. Choi, K. H.; Kim, H. S.; Lee, T. H. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. J. Power Sources 1998, 75, 230–235.

    Article  Google Scholar 

  8. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169–172.

    Article  Google Scholar 

  9. Wilson, M. S.; Valerio, J. A.; Gottesfeld, S. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 1995, 40, 355–363.

    Article  Google Scholar 

  10. Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Ralph, T. R.; Walsh, F. C. Electrochemical and microscopic characterization of platinum-coated perfluorosulfonic acid (Nafion 117) materials. Analyst 1998, 123, 1923–1929.

    Article  Google Scholar 

  11. Markovic, N. M.; Ross, P. N. Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim. Acta 2000, 45, 4101–4115.

    Article  Google Scholar 

  12. Markovic, N. M.; Gasteiger, H. A.; Grgur, B. N.; P. N. Ross, J. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 1999, 467, 157.

    Article  Google Scholar 

  13. Markovic, N. M.; Ross, P. N. Electrocatalysis at well-defined surfaces: Kinetics of oxygen reduction and hydrogen oxidation/evolution on Pt(hkl) electrodes. In Interfacial Electrochemistry. Theory, Experiment and Applications; Wieckowski, A., Ed.; Marcel Dekker: New York, 1999, pp. 821–841.

    Google Scholar 

  14. Adzic, R. R.; Wang, J. X. Configuration and site of O2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. B 1998, 102, 8988–8993.

    Article  Google Scholar 

  15. Anderson, A. B.; Albu, T. V. Ab initio approach to calculating activation energies as functions of electrode potential. Trial application to four-electron reduction of oxygen. Electrochem. Comm. 1999, 1, 203–206.

    Article  Google Scholar 

  16. Anderson, A. B.; Albu, T. V. Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J. Am. Chem. Soc. 1999, 121, 11855–11863.

    Article  Google Scholar 

  17. Anderson, A. B.; Albu, T. V. Catalytic effect of platinum on oxygen reduction: An ab initio model including electrode potential dependence. J. Electrochem. Soc. 2000, 147, 4229–4238.

    Article  Google Scholar 

  18. Anderson, A. B. O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths. Electrochim. Acta 2002, 47, 3759–3763.

    Article  Google Scholar 

  19. Li, T.; Balbuena, P. B. Computational studies of the interactions of oxygen with platinum clusters. J. Phys. Chem. B 2001, 105, 9943–9952.

    Article  Google Scholar 

  20. Li, T.; Balbuena, P. B. Oxygen reduction on a platinum cluster. Chem. Phys. Lett. 2003, 367, 439–447.

    Article  Google Scholar 

  21. Wang, Y.; Balbuena, P. B. Ab initio-molecular dynamics studies of O2 electroreduction on Pt (111): Effects of proton and electric field. J. Phys. Chem. B 2004, 108, 4376–4384.

    Article  Google Scholar 

  22. Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on Cu(111): thermochemistry, reaction barrier and the effect of strain. Surf. Sci. 2002, 505, 369.

    Article  Google Scholar 

  23. Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on Ir(111). J. Chem. Phys. 2002, 116, 10846–10853.

    Article  Google Scholar 

  24. Xu, Y.; Ruban, A. V.; Mavrikakis, M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725.

    Article  Google Scholar 

  25. Panchenko, A.; Koper, M. T. M.; Shubina, T. E.; Mitchell, S. J.; Roduner, E. Ab Initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J. Electrochem. Soc. 2004, 151, A2016–A2027.

    Article  Google Scholar 

  26. Mukerjee, S.; Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel cells. J. Electroanal. Chem. 1993, 357, 201–224.

    Article  Google Scholar 

  27. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P. Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen Reduction-XRD,XAS, and electrochemical studies. J. Phys. Chem. 1995, 99, 4577–4589.

    Article  Google Scholar 

  28. Markovic, N. M.; Ross, P. N. Surface science studies of model fuel cells electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.

    Article  Google Scholar 

  29. Paulus, U. A.; Vokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 2002, 47, 3787–3798.

    Article  Google Scholar 

  30. Paulus, U. A.; Vokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 2002, 106, 4181–4191.

    Article  Google Scholar 

  31. Balbuena, P. B.; Calvo, S. R.; Lamas, E. J.; Seminario, J. M. Adsorption and dissociation of H2O2 on Pt3, Pt2M, PtM2(M = Cr, Co, and Ni), Pt(111), and Pt3Co(111). J. Phys. Chem. B 2005, 110, 17452–17459.

    Google Scholar 

  32. Balbuena, P. B.; Altomare, D.; Agapito, L. A.; Seminario, J. M. Adsorption of oxygen on Pt-based clusters alloyed with Co, Ni, and Cr. J. Phys. Chem. B 2003, 107, 13671–13680.

    Article  Google Scholar 

  33. Drillet, J. F.; Ee, A.; Friedemann, J.; Kotz, R.; Schnyder, B.; Schmidt, V. M. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim. Acta 2002, 47, 1983–1988.

    Article  Google Scholar 

  34. Toda, T.; Igarashi, H.; Watanabe, M. Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J. Electroanal. Chem. 1999, 460, 258–262.

    Article  Google Scholar 

  35. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O-2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  Google Scholar 

  36. Anderson, A. B.; Roques, J.; Mukerjee, S.; Murthi, V. S.; Markovic, N. M.; Stamenkovic, V. Activation energies for oxygen reduction on platinum alloys: Theory and experiment. J. Phys. Chem. B 2005, 109, 1198–1203.

    Article  Google Scholar 

  37. Savadogo, O.; Lee, K.; Oishi, K.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem. Comm. 2004, 6, 105–109.

    Article  Google Scholar 

  38. Fernandez, J. L.; Walsh, D. A.; Bard, A. J. Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy. M-Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 2005, 127, 357–365.

    Article  Google Scholar 

  39. Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  40. Damjanovic, A.; Brusic, V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta 1967, 12, 615–628.

    Article  Google Scholar 

  41. Damjanovic, A.; Sepa, D. B.; Vojnovic, M. V. New evidence supports the proposed mechanism for dioxygen reduction at oxide free platinum electrodes. Electrochim. Acta 1979, 24, 887–889.

    Article  Google Scholar 

  42. Sepa, D. B.; Vojnovic, M. V.; Vracar, L. M.; Damjanovic, A. Different views regarding the kinetics and mechanisms of oxygen reduction at platinum and palladium electrodes. Electrochim. Acta 1987, 32, 129–134.

    Article  Google Scholar 

  43. Yeager, E.; Razaq, M.; Gervasio, D.; Razaq, A.; Tryk, D. “The electrolyte factor in oxygen reduction electrocatalysis.”; Proc. Workshop Struct. Eff. Electrocatal. Oxygen Electrochem. 1992.

    Google Scholar 

  44. Yeager, E.; Razaq, M.; Gervasio, D.; Razaq, A.; Tryk, D. Dioxygen reduction in various acid electrolytes. J. Serb. Chem. Soc. 1992, 57, 819–833.

    Google Scholar 

  45. Clouser, S. J.; Huang, J. C.; Yeager, E. B. Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J. Appl. Electrochem. 1993, 23, 597–605.

    Article  Google Scholar 

  46. Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.

    Article  Google Scholar 

  47. Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 2004, 108, 11024–11034.

    Article  Google Scholar 

  48. Murthi, V. S.; Urian, R. C.; Mukerjee, S. Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 11011–11023.

    Article  Google Scholar 

  49. Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3 d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

    Article  Google Scholar 

  50. Gai, P. L.; Roper, R.; White, M. G. Recent advances in nanocatalysis research. Curr. Op. Sol. St. Mat. Sci. 2002, 6, 401–406.

    Article  Google Scholar 

  51. Dassenoy, F.; Casanove, M.-J.; Lecante, P.; Verelst, M.; Snoeck, E.; Mosset, A.; Ely, T. O.; Amiens, C.; Chaudret, B. Experimental evidence of structural evolution in ultrafine colbalt particles stabilized in different polymers-From a polytetrahedral arrangement to the hexagonal structure. J. Chem. Phys 2000, 112, 8137–8145.

    Article  Google Scholar 

  52. Tadaki, T.; Koreeda, A.; Nakata, Y.; Kinoshita, T. Structure of Cu-Au alloy nanoscale particles and the phase transformation. Surf. Rev. and Lett. 1996, 3, 65–69.

    Article  Google Scholar 

  53. Sra, A. K.; Schaak, R. E. Synthesis of atomically ordered AuCu and AuCu3nanocrystals from bimetallic nanoparticle precursors. J. Am. Chem. Soc. 2004, 126, 6667–6672.

    Article  Google Scholar 

  54. Liz-Marzan, L. M. Nanometals: formation and color. Materials Today 2004, 26–31.

    Google Scholar 

  55. Guo, Z.; Kumar, C. S. S. R.; Henry, L. L.; Doomes, E. E.; Hormes, J.; Podlaha, E. J. Displacement synthesis of Cu shells surrounding Co nanoparticles. J. Electrochem. Soc. 2005, 151.

    Google Scholar 

  56. Huang, S.-P.; Balbuena, P. B. Melting of bimetallic Cu-Ni nanoclusters. J. Phys. Chem. B 2002, 106, 7225–7236.

    Article  Google Scholar 

  57. Huang, S.-P.; Balbuena, P. B. Platinum Nanoclusters on Graphite Substrates: A Molecular Dynamics Study. Mol. Phys. 2002, 100, 2165–2174.

    Article  Google Scholar 

  58. Huang, S.-P.; Mainardi, D. S.; Balbuena, P. B. Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf. Sci. 2003, 545, 163–179.

    Article  Google Scholar 

  59. Sato, K.; Kajiwara, T.; Fujiyoshi, M.; Ishimaru, M.; Hirotsu, Y.; Shinohara, T. Effects of surface step and substrate temperature on nanostructure of L10-FePt nanoparticles. J. Appl. Phys. 2003, 93, 7414–7416.

    Article  Google Scholar 

  60. Parravicini, G. B.; Stella, A.; Tognini, P.; Merli, P. G.; Migliori, A.; Cheyssac, P.; Hofman, R. Insight into the premelting and melting processes of metal nanoparticles through capacitance measurements. Appl. Phys. Lett. 2003, 82, 1461–1463.

    Article  Google Scholar 

  61. Wang, Z.; Sasaki, T.; Shimizu, Y.; Kirihara, K.; Kawaguchi, K.; Kimura, K.; Koshizaki, N. Effect of substrate position on the morphology of boron products by laser ablation. Appl. Phys. A 2004, 79, 891–893.

    Google Scholar 

  62. Qi, W. H.; Wang, M. P. Size and shape dependent melting temperature of metallic nanoparticles. Mat. Chem. and Phys. 2004, 88, 280–284.

    Article  Google Scholar 

  63. Rossi, G.; Rapallo, A.; Mottet, C.; Fortunelli, A.; Baletto, D.; Ferrando, R. Magic polyicosahedral core-shell clusters. Phys. Rev. Lett. 2004, 93, 105503.

    Article  Google Scholar 

  64. Koga, K.; Ikeshoji, T.; Sugawara, K. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 2004, 92, 115507.

    Article  Google Scholar 

  65. Bas, B. S. D.; Ford, M. J.; Cortie, M. B. Low energy structures of gold nanoclusters in the size range 3–38 atoms. J. Mol. Struct.-Theochem. 2004, 686, 193–205.

    Article  Google Scholar 

  66. Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.

    Article  Google Scholar 

  67. Min, B. K.; Wallace, W. T.; Goodman, D. W. Synthesis of a sinter-resistant, mixed-oxide support for nanoclusters. J. Phys. Chem. B 2004, 108, 14609–14615.

    Article  Google Scholar 

  68. Khanra, B.; Sarkar, A. D. Impurity and support effects on surface composition and CO plus NO reactions over Pt-Rh/CeO2 nanoparticles: A comparative study. Int. J. Mod. Phys. B 2003, 17, 4831–4839.

    Article  Google Scholar 

  69. Wang, Y.; Balbuena, P. B. Ab initio Molecular Dynamics Simulations of the Oxygen Electroreduction Reaction on a Pt(111) Surface in the Presence of Hydrated Hydronium (H3O)+(H2O)2: Direct or Series Pathway? J. Phys. Chem. B 2005, 109, 14896–14907.

    Google Scholar 

  70. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

    Article  Google Scholar 

  71. Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the elctronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  Google Scholar 

  72. Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mat. 2004, 3, 810–815.

    Article  Google Scholar 

  73. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135.

    Article  Google Scholar 

  74. Stamenkovic, V.; Grgur, B. N.; Ross, P. N.; Markovic, N. M. Oxygen reduction reaction on Pt and Pt-bimetallic electrodes covered by CO – Mechanism of the air bleed effect with reformate. J. Electrochem. Soc. 2005, 152, A277–A282.

    Article  Google Scholar 

  75. Wang, Y.; Balbuena, P. B. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H2O2. J. Chem. Theory and Comp. 2005,1, 935–943.

    Google Scholar 

  76. Eichler, A.; Hafner, J. Molecular precursors in the dissociative adsorption of O2 on Pt (111). Phys. Rev. Lett. 1997, 79, 4481–4484.

    Article  Google Scholar 

  77. Eichler, A.; Mittendorfer, F.; Hafner, J. Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys. Rev. B 2000, 62, 4744–4755.

    Article  Google Scholar 

  78. Derosa, P. A.; Seminario, J. M. electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B 2001, 105, 471–481.

    Article  Google Scholar 

  79. Paddison, S. J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Ann. Rev. Mat. Res. 2003, 33, 289–319.

    Article  Google Scholar 

  80. Balbuena, P. B.; Lamas, E. J.; Wang, Y. Molecular modeling of polymer electrolytes for power sources. Electrochim. Acta 2005, 50, 3788–3795.

    Article  Google Scholar 

  81. Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J. Phys. Chem. B 2005, 109, 11622–11633.

    Article  Google Scholar 

  82. Weber, A. Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 2004, 104, 4679–4726.

    Article  Google Scholar 

  83. Marx, D.; Sprik, M.; Parrinello, M. Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 1997, 273, 360.

    Article  Google Scholar 

  84. Seminario, J. M.; Agapito, L. A.; Yan, L.; Balbuena, P. B. Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni. Chem. Phys. Lett. 2005, 410, 275–281.

    Article  Google Scholar 

  85. Zinola, C. F.; Luna, A. M. C.; Triaca, W. E.; Arvia, A. J. The influence of surface faceting upon molecular-oxygen electroreduction on platinum in aqueous solutions. Electrochim. Acta 1994, 39, 1627–1632.

    Article  Google Scholar 

  86. Zinola, C. F.; Triaca, W. E.; Arvia, A. J. Kinetics and mechanism of the oxygen electroreduction reaction on faceted platinum-electrodes in trifluoromethanesulfonic acid solutions. J. Appl. Electrochem. 1995, 25, 740–754.

    Article  Google Scholar 

  87. Balbuena, P. B.; Altomare, D.; Vadlamani, N.; Bingi, S.; Agapito, L. A.; Seminario, J. M. Adsorption of O, OH, and H2O on Pt-based bimetallic clusters alloyed with Co, Cr, and Ni. J. Phys. Chem. A 2004, 108, 6378–6384.

    Article  Google Scholar 

  88. Sidik, R. A.; Anderson, A. B. Density functional theory study of O2 electroduction when bonded to a Pt dual site. J. Electroanal. Chem. 2002, 528, 69–76.

    Article  Google Scholar 

  89. Wang, Y.; Balbuena, P. B. Design of oxygen reduction bimetallic catalysts: Ab-initio derived thermodynamic guidelines. J. Phys. Chem. B 2005, 109, 18902–18906.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Department of Energy, Basic Energy Sciences (Grant DE-FG02-04ER15619), and of the Army Research Office (DURIP grant W911N F-04-1-0098).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balbuena, P.B., Wang, Y., Lamas, E.J., Calvo, S.R., Agapito, L.A., Seminario, J.M. (2009). Reactivity of Bimetallic Nanoclusters Toward the Oxygen Reduction in Acid Medium. In: Paddison, S.J., Promislow, K.S. (eds) Device and Materials Modeling in PEM Fuel Cells. Topics in Applied Physics, vol 113. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78691-9_19

Download citation

Publish with us

Policies and ethics