Advertisement

Reactivity of Bimetallic Nanoclusters Toward the Oxygen Reduction in Acid Medium

  • Perla B. Balbuena
  • Yixuan Wang
  • Eduardo J. Lamas
  • Sergio R. Calvo
  • Luis A. Agapito
  • Jorge M. Seminario
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

The oxygen reduction reaction (ORR) on Pt and Pt-alloys, the slowest of the two electrode reactions of low temperature fuel cells, has been studied for a long time in an effort to fully understand its mechanism and therefore be able to develop improved catalyst materials which may significantly contribute to enhance the overall fuel cell efficiency [1, 2].

The standard potential for the four-electron reduction of oxygen in acid medium is 1.23 V with respect to the standard hydrogen electrode. However, a negative overpotential – for the ORR – of about 0.3–0.5 V is needed to start the reaction on a Pt electrode, Pt being the best catalyst known so far for this reaction [3]. This overpotential is usually attributed both to kinetic and mass transport limitations at the cathode electrode. Nanoscale proton-exchange membrane (PEM) electrocatalysts have been used since the 1960s [1]; however they are in most cases the result of lucky trial and error experimentation, and there is...

Keywords

Proton Transfer Oxygen Reduction Reaction Oxygen Reduction Reaction Activity Hollow Site Bimetallic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Department of Energy, Basic Energy Sciences (Grant DE-FG02-04ER15619), and of the Army Research Office (DURIP grant W911N F-04-1-0098).

References

  1. [1]
    Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies Nature 2001, 414, 345–352.CrossRefGoogle Scholar
  2. [2]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Cat. B: Environmental 2005, 56, 9–35.CrossRefGoogle Scholar
  3. [3]
    Adzic, R. Recent advances in the kinetics of oxygen reduction. In Electrocatalysis; Lipkowski, J., Ross, P. N., Eds.; Wiley-VCH: New York, 1998, pp. 197–242.Google Scholar
  4. [4]
    Poirier, J. A.; Stoner, G. E. Microstructural effects on electrocatalytic oxygen reduction activvity of nano-grained thin-film Platinum in acid media. J. Electrochem. Soc. 1994, 141, 425–430.CrossRefGoogle Scholar
  5. [5]
    Takasu, Y.; Ohashi, N.; Zhang, X.-G.; Murakami, Y.; Minagawa, H.; Sato, S.; Yahikozawa, K. Size effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 1996, 41, 2592–2600.CrossRefGoogle Scholar
  6. [6]
    Peuckert, M.; Yoneda, T.; Betta, R. A. D.; Boudart, M. Oxygen reduction on small supported platinum particles. J. Electrochem. Soc. 1986, 133, 944–947.CrossRefGoogle Scholar
  7. [7]
    Choi, K. H.; Kim, H. S.; Lee, T. H. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. J. Power Sources 1998, 75, 230–235.CrossRefGoogle Scholar
  8. [8]
    Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169–172.CrossRefGoogle Scholar
  9. [9]
    Wilson, M. S.; Valerio, J. A.; Gottesfeld, S. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 1995, 40, 355–363.CrossRefGoogle Scholar
  10. [10]
    Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Ralph, T. R.; Walsh, F. C. Electrochemical and microscopic characterization of platinum-coated perfluorosulfonic acid (Nafion 117) materials. Analyst 1998, 123, 1923–1929.CrossRefGoogle Scholar
  11. [11]
    Markovic, N. M.; Ross, P. N. Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim. Acta 2000, 45, 4101–4115.CrossRefGoogle Scholar
  12. [12]
    Markovic, N. M.; Gasteiger, H. A.; Grgur, B. N.; P. N. Ross, J. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 1999, 467, 157.CrossRefGoogle Scholar
  13. [13]
    Markovic, N. M.; Ross, P. N. Electrocatalysis at well-defined surfaces: Kinetics of oxygen reduction and hydrogen oxidation/evolution on Pt(hkl) electrodes. In Interfacial Electrochemistry. Theory, Experiment and Applications; Wieckowski, A., Ed.; Marcel Dekker: New York, 1999, pp. 821–841.Google Scholar
  14. [14]
    Adzic, R. R.; Wang, J. X. Configuration and site of O2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. B 1998, 102, 8988–8993.CrossRefGoogle Scholar
  15. [15]
    Anderson, A. B.; Albu, T. V. Ab initio approach to calculating activation energies as functions of electrode potential. Trial application to four-electron reduction of oxygen. Electrochem. Comm. 1999, 1, 203–206.CrossRefGoogle Scholar
  16. [16]
    Anderson, A. B.; Albu, T. V. Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J. Am. Chem. Soc. 1999, 121, 11855–11863.CrossRefGoogle Scholar
  17. [17]
    Anderson, A. B.; Albu, T. V. Catalytic effect of platinum on oxygen reduction: An ab initio model including electrode potential dependence. J. Electrochem. Soc. 2000, 147, 4229–4238.CrossRefGoogle Scholar
  18. [18]
    Anderson, A. B. O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths. Electrochim. Acta 2002, 47, 3759–3763.CrossRefGoogle Scholar
  19. [19]
    Li, T.; Balbuena, P. B. Computational studies of the interactions of oxygen with platinum clusters. J. Phys. Chem. B 2001, 105, 9943–9952.CrossRefGoogle Scholar
  20. [20]
    Li, T.; Balbuena, P. B. Oxygen reduction on a platinum cluster. Chem. Phys. Lett. 2003, 367, 439–447.CrossRefGoogle Scholar
  21. [21]
    Wang, Y.; Balbuena, P. B. Ab initio-molecular dynamics studies of O2 electroreduction on Pt (111): Effects of proton and electric field. J. Phys. Chem. B 2004, 108, 4376–4384.CrossRefGoogle Scholar
  22. [22]
    Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on Cu(111): thermochemistry, reaction barrier and the effect of strain. Surf. Sci. 2002, 505, 369.CrossRefGoogle Scholar
  23. [23]
    Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on Ir(111). J. Chem. Phys. 2002, 116, 10846–10853.CrossRefGoogle Scholar
  24. [24]
    Xu, Y.; Ruban, A. V.; Mavrikakis, M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725.CrossRefGoogle Scholar
  25. [25]
    Panchenko, A.; Koper, M. T. M.; Shubina, T. E.; Mitchell, S. J.; Roduner, E. Ab Initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J. Electrochem. Soc. 2004, 151, A2016–A2027.CrossRefGoogle Scholar
  26. [26]
    Mukerjee, S.; Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel cells. J. Electroanal. Chem. 1993, 357, 201–224.CrossRefGoogle Scholar
  27. [27]
    Mukerjee, S.; Srinivasan, S.; Soriaga, M. P. Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen Reduction-XRD,XAS, and electrochemical studies. J. Phys. Chem. 1995, 99, 4577–4589.CrossRefGoogle Scholar
  28. [28]
    Markovic, N. M.; Ross, P. N. Surface science studies of model fuel cells electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.CrossRefGoogle Scholar
  29. [29]
    Paulus, U. A.; Vokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 2002, 47, 3787–3798.CrossRefGoogle Scholar
  30. [30]
    Paulus, U. A.; Vokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 2002, 106, 4181–4191.CrossRefGoogle Scholar
  31. [31]
    Balbuena, P. B.; Calvo, S. R.; Lamas, E. J.; Seminario, J. M. Adsorption and dissociation of H2O2 on Pt3, Pt2M, PtM2(M = Cr, Co, and Ni), Pt(111), and Pt3Co(111). J. Phys. Chem. B 2005, 110, 17452–17459.Google Scholar
  32. [32]
    Balbuena, P. B.; Altomare, D.; Agapito, L. A.; Seminario, J. M. Adsorption of oxygen on Pt-based clusters alloyed with Co, Ni, and Cr. J. Phys. Chem. B 2003, 107, 13671–13680.CrossRefGoogle Scholar
  33. [33]
    Drillet, J. F.; Ee, A.; Friedemann, J.; Kotz, R.; Schnyder, B.; Schmidt, V. M. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim. Acta 2002, 47, 1983–1988.CrossRefGoogle Scholar
  34. [34]
    Toda, T.; Igarashi, H.; Watanabe, M. Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J. Electroanal. Chem. 1999, 460, 258–262.CrossRefGoogle Scholar
  35. [35]
    Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O-2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.CrossRefGoogle Scholar
  36. [36]
    Anderson, A. B.; Roques, J.; Mukerjee, S.; Murthi, V. S.; Markovic, N. M.; Stamenkovic, V. Activation energies for oxygen reduction on platinum alloys: Theory and experiment. J. Phys. Chem. B 2005, 109, 1198–1203.CrossRefGoogle Scholar
  37. [37]
    Savadogo, O.; Lee, K.; Oishi, K.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem. Comm. 2004, 6, 105–109.CrossRefGoogle Scholar
  38. [38]
    Fernandez, J. L.; Walsh, D. A.; Bard, A. J. Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy. M-Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 2005, 127, 357–365.CrossRefGoogle Scholar
  39. [39]
    Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  40. [40]
    Damjanovic, A.; Brusic, V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta 1967, 12, 615–628.CrossRefGoogle Scholar
  41. [41]
    Damjanovic, A.; Sepa, D. B.; Vojnovic, M. V. New evidence supports the proposed mechanism for dioxygen reduction at oxide free platinum electrodes. Electrochim. Acta 1979, 24, 887–889.CrossRefGoogle Scholar
  42. [42]
    Sepa, D. B.; Vojnovic, M. V.; Vracar, L. M.; Damjanovic, A. Different views regarding the kinetics and mechanisms of oxygen reduction at platinum and palladium electrodes. Electrochim. Acta 1987, 32, 129–134.CrossRefGoogle Scholar
  43. [43]
    Yeager, E.; Razaq, M.; Gervasio, D.; Razaq, A.; Tryk, D. “The electrolyte factor in oxygen reduction electrocatalysis.”; Proc. Workshop Struct. Eff. Electrocatal. Oxygen Electrochem. 1992.Google Scholar
  44. [44]
    Yeager, E.; Razaq, M.; Gervasio, D.; Razaq, A.; Tryk, D. Dioxygen reduction in various acid electrolytes. J. Serb. Chem. Soc. 1992, 57, 819–833.Google Scholar
  45. [45]
    Clouser, S. J.; Huang, J. C.; Yeager, E. B. Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J. Appl. Electrochem. 1993, 23, 597–605.CrossRefGoogle Scholar
  46. [46]
    Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.CrossRefGoogle Scholar
  47. [47]
    Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 2004, 108, 11024–11034.CrossRefGoogle Scholar
  48. [48]
    Murthi, V. S.; Urian, R. C.; Mukerjee, S. Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 11011–11023.CrossRefGoogle Scholar
  49. [49]
    Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3 d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.CrossRefGoogle Scholar
  50. [50]
    Gai, P. L.; Roper, R.; White, M. G. Recent advances in nanocatalysis research. Curr. Op. Sol. St. Mat. Sci. 2002, 6, 401–406.CrossRefGoogle Scholar
  51. [51]
    Dassenoy, F.; Casanove, M.-J.; Lecante, P.; Verelst, M.; Snoeck, E.; Mosset, A.; Ely, T. O.; Amiens, C.; Chaudret, B. Experimental evidence of structural evolution in ultrafine colbalt particles stabilized in different polymers-From a polytetrahedral arrangement to the hexagonal structure. J. Chem. Phys 2000, 112, 8137–8145.CrossRefGoogle Scholar
  52. [52]
    Tadaki, T.; Koreeda, A.; Nakata, Y.; Kinoshita, T. Structure of Cu-Au alloy nanoscale particles and the phase transformation. Surf. Rev. and Lett. 1996, 3, 65–69.CrossRefGoogle Scholar
  53. [53]
    Sra, A. K.; Schaak, R. E. Synthesis of atomically ordered AuCu and AuCu3nanocrystals from bimetallic nanoparticle precursors. J. Am. Chem. Soc. 2004, 126, 6667–6672.CrossRefGoogle Scholar
  54. [54]
    Liz-Marzan, L. M. Nanometals: formation and color. Materials Today 2004, 26–31.Google Scholar
  55. [55]
    Guo, Z.; Kumar, C. S. S. R.; Henry, L. L.; Doomes, E. E.; Hormes, J.; Podlaha, E. J. Displacement synthesis of Cu shells surrounding Co nanoparticles. J. Electrochem. Soc. 2005, 151.Google Scholar
  56. [56]
    Huang, S.-P.; Balbuena, P. B. Melting of bimetallic Cu-Ni nanoclusters. J. Phys. Chem. B 2002, 106, 7225–7236.CrossRefGoogle Scholar
  57. [57]
    Huang, S.-P.; Balbuena, P. B. Platinum Nanoclusters on Graphite Substrates: A Molecular Dynamics Study. Mol. Phys. 2002, 100, 2165–2174.CrossRefGoogle Scholar
  58. [58]
    Huang, S.-P.; Mainardi, D. S.; Balbuena, P. B. Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf. Sci. 2003, 545, 163–179.CrossRefGoogle Scholar
  59. [59]
    Sato, K.; Kajiwara, T.; Fujiyoshi, M.; Ishimaru, M.; Hirotsu, Y.; Shinohara, T. Effects of surface step and substrate temperature on nanostructure of L10-FePt nanoparticles. J. Appl. Phys. 2003, 93, 7414–7416.CrossRefGoogle Scholar
  60. [60]
    Parravicini, G. B.; Stella, A.; Tognini, P.; Merli, P. G.; Migliori, A.; Cheyssac, P.; Hofman, R. Insight into the premelting and melting processes of metal nanoparticles through capacitance measurements. Appl. Phys. Lett. 2003, 82, 1461–1463.CrossRefGoogle Scholar
  61. [61]
    Wang, Z.; Sasaki, T.; Shimizu, Y.; Kirihara, K.; Kawaguchi, K.; Kimura, K.; Koshizaki, N. Effect of substrate position on the morphology of boron products by laser ablation. Appl. Phys. A 2004, 79, 891–893.Google Scholar
  62. [62]
    Qi, W. H.; Wang, M. P. Size and shape dependent melting temperature of metallic nanoparticles. Mat. Chem. and Phys. 2004, 88, 280–284.CrossRefGoogle Scholar
  63. [63]
    Rossi, G.; Rapallo, A.; Mottet, C.; Fortunelli, A.; Baletto, D.; Ferrando, R. Magic polyicosahedral core-shell clusters. Phys. Rev. Lett. 2004, 93, 105503.CrossRefGoogle Scholar
  64. [64]
    Koga, K.; Ikeshoji, T.; Sugawara, K. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 2004, 92, 115507.CrossRefGoogle Scholar
  65. [65]
    Bas, B. S. D.; Ford, M. J.; Cortie, M. B. Low energy structures of gold nanoclusters in the size range 3–38 atoms. J. Mol. Struct.-Theochem. 2004, 686, 193–205.CrossRefGoogle Scholar
  66. [66]
    Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.CrossRefGoogle Scholar
  67. [67]
    Min, B. K.; Wallace, W. T.; Goodman, D. W. Synthesis of a sinter-resistant, mixed-oxide support for nanoclusters. J. Phys. Chem. B 2004, 108, 14609–14615.CrossRefGoogle Scholar
  68. [68]
    Khanra, B.; Sarkar, A. D. Impurity and support effects on surface composition and CO plus NO reactions over Pt-Rh/CeO2 nanoparticles: A comparative study. Int. J. Mod. Phys. B 2003, 17, 4831–4839.CrossRefGoogle Scholar
  69. [69]
    Wang, Y.; Balbuena, P. B. Ab initio Molecular Dynamics Simulations of the Oxygen Electroreduction Reaction on a Pt(111) Surface in the Presence of Hydrated Hydronium (H3O)+(H2O)2: Direct or Series Pathway? J. Phys. Chem. B 2005, 109, 14896–14907. Google Scholar
  70. [70]
    Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, Co. J. Electrochem. Soc. 1999, 146, 3750–3756.CrossRefGoogle Scholar
  71. [71]
    Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the elctronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.CrossRefGoogle Scholar
  72. [72]
    Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mat. 2004, 3, 810–815.CrossRefGoogle Scholar
  73. [73]
    Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135.CrossRefGoogle Scholar
  74. [74]
    Stamenkovic, V.; Grgur, B. N.; Ross, P. N.; Markovic, N. M. Oxygen reduction reaction on Pt and Pt-bimetallic electrodes covered by CO – Mechanism of the air bleed effect with reformate. J. Electrochem. Soc. 2005, 152, A277–A282.CrossRefGoogle Scholar
  75. [75]
    Wang, Y.; Balbuena, P. B. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H2O2. J. Chem. Theory and Comp. 2005,1, 935–943.Google Scholar
  76. [76]
    Eichler, A.; Hafner, J. Molecular precursors in the dissociative adsorption of O2 on Pt (111). Phys. Rev. Lett. 1997, 79, 4481–4484.CrossRefGoogle Scholar
  77. [77]
    Eichler, A.; Mittendorfer, F.; Hafner, J. Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys. Rev. B 2000, 62, 4744–4755.CrossRefGoogle Scholar
  78. [78]
    Derosa, P. A.; Seminario, J. M. electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B 2001, 105, 471–481.CrossRefGoogle Scholar
  79. [79]
    Paddison, S. J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Ann. Rev. Mat. Res. 2003, 33, 289–319.CrossRefGoogle Scholar
  80. [80]
    Balbuena, P. B.; Lamas, E. J.; Wang, Y. Molecular modeling of polymer electrolytes for power sources. Electrochim. Acta 2005, 50, 3788–3795.CrossRefGoogle Scholar
  81. [81]
    Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J. Phys. Chem. B 2005, 109, 11622–11633.CrossRefGoogle Scholar
  82. [82]
    Weber, A. Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 2004, 104, 4679–4726.CrossRefGoogle Scholar
  83. [83]
    Marx, D.; Sprik, M.; Parrinello, M. Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 1997, 273, 360.CrossRefGoogle Scholar
  84. [84]
    Seminario, J. M.; Agapito, L. A.; Yan, L.; Balbuena, P. B. Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni. Chem. Phys. Lett. 2005, 410, 275–281.CrossRefGoogle Scholar
  85. [85]
    Zinola, C. F.; Luna, A. M. C.; Triaca, W. E.; Arvia, A. J. The influence of surface faceting upon molecular-oxygen electroreduction on platinum in aqueous solutions. Electrochim. Acta 1994, 39, 1627–1632.CrossRefGoogle Scholar
  86. [86]
    Zinola, C. F.; Triaca, W. E.; Arvia, A. J. Kinetics and mechanism of the oxygen electroreduction reaction on faceted platinum-electrodes in trifluoromethanesulfonic acid solutions. J. Appl. Electrochem. 1995, 25, 740–754.CrossRefGoogle Scholar
  87. [87]
    Balbuena, P. B.; Altomare, D.; Vadlamani, N.; Bingi, S.; Agapito, L. A.; Seminario, J. M. Adsorption of O, OH, and H2O on Pt-based bimetallic clusters alloyed with Co, Cr, and Ni. J. Phys. Chem. A 2004, 108, 6378–6384.CrossRefGoogle Scholar
  88. [88]
    Sidik, R. A.; Anderson, A. B. Density functional theory study of O2 electroduction when bonded to a Pt dual site. J. Electroanal. Chem. 2002, 528, 69–76.CrossRefGoogle Scholar
  89. [89]
    Wang, Y.; Balbuena, P. B. Design of oxygen reduction bimetallic catalysts: Ab-initio derived thermodynamic guidelines. J. Phys. Chem. B 2005, 109, 18902–18906.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Perla B. Balbuena
    • 1
  • Yixuan Wang
  • Eduardo J. Lamas
  • Sergio R. Calvo
  • Luis A. Agapito
  • Jorge M. Seminario
  1. 1.Department of Chemical EngineeringTexas A&M University

Personalised recommendations