Advertisement

Molecular-Level Modeling of Anode and Cathode Electrocatalysis for PEM Fuel Cells

  • Marc T.M. Koper
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

Molecular-level modeling of heterogeneously catalyzed reactions is playing an increasingly important in the understanding of existing catalysts and the rational design of new catalysts. The progress in theoretical and computational modeling of heterogeneous catalysis, both in the gas and liquid phase, has been reviewed in several recent texts [1,2,3,4]. Although many of the conceptual aspects of modeling are similar, theoretical descriptions of catalytic reactions at the solid–liquid interface feature some important complications, mainly related to the presence of the liquid (electrolyte) phase and the electrical polarizability of the interface. This has consequences at various levels of theoretical and computational approaches.

The purpose of this chapter is to selectively summarize recent advances in the molecular modeling of anode and cathode electrocatalytic reactions employing different computational approaches, ranging from first-principlesquantum-chemical...

Keywords

Density Functional Theory Oxygen Reduction Hollow Site Negative Field Solvent Reorganization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work described in this chapter was done while I was at Eindhoven University of Technology. I would like to thank all my colleagues and co-authors who contributed to this work. Financial support from the Royal Netherlands Academy of Arts and Sciences (KNAW), the Netherlands Foundation for Scientific Research (NWO), and the Energy Research Centre of the Netherlands (ECN) and the European Union is also gratefully acknowledged.

References

  1. [1]
    R.A. van Santen, M. Neurock, Catal. Rev. Sci. Eng. 37 357 (1995).Google Scholar
  2. [2]
    B. Hammer, J.K. Nørksov, Adv. Catal. 45 71 (2001)CrossRefGoogle Scholar
  3. [3]
    J. Greeley, J.K. Nørksov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53 319 (2002)CrossRefGoogle Scholar
  4. [4]
    M.T.M. Koper, R.A. van Santen, M. Neurock, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, E.R. Savinova, C.G. Vayenas, A. Wieckowski, eds., Marcel Dekker, New York, p.1 (2003)Google Scholar
  5. [5]
    F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, Chicester, (1999)Google Scholar
  6. [6]
    P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864MathSciNetCrossRefGoogle Scholar
  7. [7]
    M.T.M. Koper, in Modern Aspects of Electrochemistry, Eds. C.G. Vayenas, B.E. Conway, R.E. White, Kluwer Academic/Plenum Press, New York, Vol. 36, p. 51 (2003)Google Scholar
  8. [8]
    R. Carr, M. Parrinello, Phys. Rev. Lett. 55 2471 (1985)CrossRefGoogle Scholar
  9. [9]
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Clarendon, Oxford, (1987)Google Scholar
  10. [10]
    D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, London, (2002)Google Scholar
  11. [11]
    J.J. Lukkien, J.P.L. Segers, P.A.J. Hilbers, R.J. Gelten, A.P.J. Jansen, Phys. Rev. E 58 2598 (1998)CrossRefGoogle Scholar
  12. [12]
    G. Blyholder, J. Phys. Chem. 68 2772 (1964)CrossRefGoogle Scholar
  13. [13]
    B. Hammer, Y. Morikawa, J.K. Nørskov, Phys. Rev. Lett. 76 2141 (1996)CrossRefGoogle Scholar
  14. [14]
    B. Hammer, J.K. Nørskov, Surf. Sci. 343 211 (1995)CrossRefGoogle Scholar
  15. [15]
    A. Ruban, B. Hammer, P. Stoltze, H.L. Skiver, J.K. Nørskov, J. Mol. Catal. A 115 421 (1997)CrossRefGoogle Scholar
  16. [16]
    M.T.M. Koper, R.A. van Santen, S.A. Wasileski, M.J. Weaver, J. Chem. Phys. 113 4392 (2000)CrossRefGoogle Scholar
  17. [17]
    M.J. Weaver, S. Zou, C. Tang, J. Chem. Phys. 111 368 (1999)CrossRefGoogle Scholar
  18. [18]
    M.J. Weaver, Surf. Sci. 437 215 (1999)CrossRefGoogle Scholar
  19. [19]
    P.S. Bagus, C.J. Nelin, K. Hermann, M.R. Philpott, Phys. Rev. Lett. 36 8169 (1987)Google Scholar
  20. [20]
    P.S. Bagus, G. Pacchioni, Electrochim. Acta 36 1669 (1991)CrossRefGoogle Scholar
  21. [21]
    F. Illas, S. Zurita, J. Rubio, A.M. Márquez, Phys. Rev. B 52 12372 (1995)CrossRefGoogle Scholar
  22. [22]
    T. Ziegler, A. Rauk, Theor. Chim. Acta 46 1 (1977)Google Scholar
  23. [23]
    S.A. Wasileski, M.J. Weaver, Faraday Disc. 121 285 (2002)CrossRefGoogle Scholar
  24. [24]
    Q. Ge, S. Desai, M. Neurock, K. Kourtakis, J. Phys. Chem. B 105 9533 (2001)CrossRefGoogle Scholar
  25. [25]
    M.T.M. Koper, T.E. Shubina, R.A. van Santen, J. Phys. Chem. B 106 686 (2002)CrossRefGoogle Scholar
  26. [26]
    F. Buatier de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R.J. Behm, Surf. Sci. 411 249 (1998)CrossRefGoogle Scholar
  27. [27]
    M. Head-Gordon, J.C. Tully, Chem. Phys. 175 37 (1993)CrossRefGoogle Scholar
  28. [28]
    F. Illas, F. Mele, D. Curulla, A. Clotet, Electrochim. Acta 44 1213 (1998)CrossRefGoogle Scholar
  29. [29]
    D. Curulla, A. Clotet, J.M. Ricart, F. Illas, Electrochim. Acta 45 639 (1999)CrossRefGoogle Scholar
  30. [30]
    D. Curulla, A. Clotet, J.M. Ricart, F. Illas, J. Phys. Chem. B 103 5246 (1999)CrossRefGoogle Scholar
  31. [31]
    M.J. Weaver, Appl. Surf. Sci. 67 147 (1993)CrossRefGoogle Scholar
  32. [32]
    S.A. Wasileski, M.T.M. Koper, M.J. Weaver, J. Phys. Chem. B 105 3518 (2001)CrossRefGoogle Scholar
  33. [33]
    P. Gao, M.J. Weaver, J. Phys. Chem. 90 4057 (1986)CrossRefGoogle Scholar
  34. [34]
    T.E. Shubina, C. Hartnig, M.T.M. Koper, Phys. Chem. Chem. Phys. 6 4215 (2004)CrossRefGoogle Scholar
  35. [35]
    B.D. Dunietz, N.M. Markovic, P.N. Ross, M. Head-Gordon, J. Phys. Chem. B 108 9888 (2004)CrossRefGoogle Scholar
  36. [36]
    M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 259 (1975)CrossRefGoogle Scholar
  37. [37]
    M.T.M. Koper, J.J. Lukkien, A.P.J. Jansen, R.A. van Santen, J. Phys. Chem. B 103 5522 (1999)CrossRefGoogle Scholar
  38. [38]
    H.A. Gasteiger, N.M. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 98 617 (1994)CrossRefGoogle Scholar
  39. [39]
    H. Massong, H.S. Wang, G. Samjeske, H. Baltruschat, Electrochim. Acta 46 701 (2000)CrossRefGoogle Scholar
  40. [40]
    G.-Q. Lu, P. Waszczuk, A. Wieckowski, J. Electroanal. Chem. 532 49 (2002)CrossRefGoogle Scholar
  41. [41]
    M.T.M. Koper, R.A. van Santen, J. Electroanal. Chem. 472 126 (1999)CrossRefGoogle Scholar
  42. [42]
    A. Michaelides, P. Hu, J. Chem. Phys. 114 513 (2001)CrossRefGoogle Scholar
  43. [43]
    P. Vassilev, M.T.M. Koper, R.A. van Santen, Chem. Phys. Lett. 359 337 (2002)CrossRefGoogle Scholar
  44. [44]
    M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Chem. Phys. 103 150 (1995)CrossRefGoogle Scholar
  45. [45]
    S.K. Desai, M. Neurock, K. Kourtakis, J. Phys. Chem. B 106 2559 (2002)CrossRefGoogle Scholar
  46. [46]
    J. Greeley, M. Mavrikakis, J. Am. Chem. Soc. 124 7193 (2002)CrossRefGoogle Scholar
  47. [47]
    J. Greeley, M. Mavrikakis, J. Am. Chem. Soc. 126 3910 (2004)CrossRefGoogle Scholar
  48. [48]
    M. Neurock, S.A. Wasileski, D. Mei, Chem. Eng. Sci. 59 4703 (2004)CrossRefGoogle Scholar
  49. [49]
    D. Cao, G.-Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, J. Phys. Chem. B 109 11622 (2005)CrossRefGoogle Scholar
  50. [50]
    Y. Okamoto, O. Sugino, Y. Mochizuki, T. Ikeshoji, Y. Morikawa, Chem. Phys. Lett. 377 236 (2003)CrossRefGoogle Scholar
  51. [51]
    C. Hartnig, E. Spohr, Chem. Phys. 319, 185 (2005)Google Scholar
  52. [52]
    K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, (1992)Google Scholar
  53. [53]
    R.R. Adzic, in Electrocatalysis, Eds. J. Lipkowski,. P.N. Ross, Wiley, New York, p. 197 (1998)Google Scholar
  54. [54]
    C. Hartnig, M.T.M. Koper, J. Electroanal. Chem. 531 165 (2002)Google Scholar
  55. [55]
    C. Hartnig, M.T.M. Koper, J. Chem. Phys. 115 8540 (2001)CrossRefGoogle Scholar
  56. [56]
    A. Panchenko, M.T.M. Koper, T.E. Shubina, S.J. Mitchell, E. Roduner, J. Electrochem. Soc. 151 A2016 (2004)CrossRefGoogle Scholar
  57. [57]
    P. Vassilev, M.T.M. Koper, J. Phys. Chem. C 111 2607 (2007)Google Scholar
  58. [58]
    A.C. Luntz, J. Grimblot, D.E. Fowler, Phys. Rev. B 39 12903 (1989)CrossRefGoogle Scholar
  59. [59]
    A. Eichler, J. Hafner, Phys. Rev. Lett. 79 4481 (1997)CrossRefGoogle Scholar
  60. [60]
    N.M. Markovic, T.J. Schmidt, V. Stamenkovic, P.N. Ross, Fuel Cells 1 105 (2001)CrossRefGoogle Scholar
  61. [61]
    J.K. Norksov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Blygaard, H. Jonsson, J. Phys. Chem. B 108 17886 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marc T.M. Koper

There are no affiliations available

Personalised recommendations