Advertisement

Morphology of Nafion Membranes: Microscopic and Mesoscopic Modeling

  • Dmitry Galperin
  • Pavel G. Khalatur
  • Alexei R. Khokhlov
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

Polymer electrolyte fuel cells (PEFCs) have attracted much interest as one of the most promising nonpolluting power sources capable of producing electrical energy with high thermodynamic efficiencies. The key element of PEFCs is a polymer electrolyte membrane (PEM) that serves as proton conductor and gas separator [ 1, 2, 3, 4]. The membrane commonly employed in most PEFC developments is based on Nafion, which represents a family of comb-shaped ionomers with a perfluorinated polymeric backbone and short pendant (side) chains having sulfonic acid end groups

Keywords

Monte Carlo Water Cluster Sulfonate Group Dissipative Particle Dynamic Sulfonic Acid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support from the E.I. Du Pont de Nemours Company, RFBR and the Deutsche Forschungsgemainschaft (SFB 569, Projects A11 and B13) is highly appreciated.

References

  1. [1]
    Yeager HL, Eisenberg A (1982) Perfluorinated Ionomer Membranes, Eisenberg A, Yeager HL (eds.), ACS Symp. Series 180; Amer. Chem. Soc., Waschington, DC.Google Scholar
  2. [2]
    Gottesfeld S, Zawodzinski TA (1997) Polymer Electrolyte Fuel Cells. In AdVances in Electrochemical Science and Engineering, Alkire RC, Gerischer H, Kolb DM, Tobias CW (eds.), Wiley-VCH: Weinheim, Germany, Vol. 5, pp 195–301Google Scholar
  3. [3]
    Ionomers: Synthesis, Structure, Properties and Applications (1997) Tant MR, Mauritz KA, Wilkes GL (eds.) Blackie Academic & Professional: London, 514 pp.Google Scholar
  4. [4]
    Ionomers: Characterization, Theory and Applications (1996) Schlick S (ed.), CRC Press, Boca Raton, FLGoogle Scholar
  5. [5]
    Roche EJ, Pineri M, Duplessix R, Levelut AM (1981) J Polym Sci Polym Phys Ed 19: 1–11CrossRefGoogle Scholar
  6. [6]
    Gierke TD, Munn GE, Wilson FC (1981) J Polym Sci Polym Phys Ed 19: 1687CrossRefGoogle Scholar
  7. [7]
    Gebel G, Moore RB (2000) Macromolecules 33: 4850–4859CrossRefGoogle Scholar
  8. [8]
    Elliott JA, Hanna S, Elliott AMS, Cooley GE (2000) Macromolecules 33: 4161–4171CrossRefGoogle Scholar
  9. [9]
    Gebel G. Polymer (2000) 41: 5829–5838CrossRefGoogle Scholar
  10. [10]
    Paddison SJ (2003) Annu Rev Mater Res 33: 289–319CrossRefGoogle Scholar
  11. [11]
    Paddison SJ (2003) Handbook of Fuel Cells – Fundamentals, Technology and Applications. Volume 3 – Fuel Cell Technology and Applications, Vielstich W, Lamm A, Gasteiger H (eds.), J Wiley & Sons, Chichester, UKGoogle Scholar
  12. [12]
    Mauritz KA, Moore RB (2004) Chem Rev 104: 4535–4585CrossRefGoogle Scholar
  13. [13]
    Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104: 4637–4678CrossRefGoogle Scholar
  14. [14]
    Weber AZ, Newman J (2004) Chem Rev 104: 4679–4726CrossRefGoogle Scholar
  15. [15]
    Hamley IW (1998) The Physics of Block Copolymers, Oxford University Press, OxfordGoogle Scholar
  16. [16]
    Leibler L (1980) Macromolecules 13: 1602CrossRefGoogle Scholar
  17. [17]
    Glotzer SC, Paul W (2002) Annu Rev Mater Res 32: 401–436CrossRefGoogle Scholar
  18. [18]
    Hoogerbrugge PJ, Koelmann JMVA (1992) Europhys Lett 19: 155CrossRefGoogle Scholar
  19. [19]
    Espanol P, Warren P (1995) Europhys Lett 30: 191CrossRefGoogle Scholar
  20. [20]
    Yamamoto S, Hyodo S (2003) Polymer J 35: 519–527CrossRefGoogle Scholar
  21. [21]
    Hyodo S (2004) Molec Simul 30: 887–893CrossRefGoogle Scholar
  22. [22]
    Carmesin I, Kremer K (1988) Macromolecules 21: 2819CrossRefGoogle Scholar
  23. [23]
    Khalatur PG, Khokhlov AR, Prokhorova SA, Sheiko SS, Möller M, Reineker P, Shirvanyanz DG, Starovoitova NY (2000) Eur Phys J E 1: 99–103CrossRefGoogle Scholar
  24. [24]
    Khalatur PG, Shirvanyanz DG, Starovoitova NY, Khokhlov AR (2000) Macromol Theory Simul 9:141–155CrossRefGoogle Scholar
  25. [25]
    Shirvanyanz DG, Pavlov AS, Khalatur PG, Khokhlov AR (2000) J Chem Phys 112: 11069–11079CrossRefGoogle Scholar
  26. [26]
    Koelmann JMVA (1990) Phys Rev Lett 64: 1915CrossRefGoogle Scholar
  27. [27]
    Mologin DA, Khalatur PG, Khokhlov AR (2002) Macromol Theory Simul 11: 587–607CrossRefGoogle Scholar
  28. [28]
    Fried H, Binder K (1991) J Chem Phys 94: 8349CrossRefGoogle Scholar
  29. [29]
    Gauger A, Wayersberg A, Pakula T (1993) Macromol Chem Theory Simul 2: 531CrossRefGoogle Scholar
  30. [30]
    Litt MH (1997) Polymer Preprints 38: 80Google Scholar
  31. [31]
    Roche EJ, Pinéri M, Duplessix R (1982) J Polym Sci, Polym Phys Ed 20: 107CrossRefGoogle Scholar
  32. [32]
    Falk M (1980) Can J Chem 58: 1495CrossRefGoogle Scholar
  33. [33]
    Hsu WY, Gierke TD (1982) Macromolecules 15: 101CrossRefGoogle Scholar
  34. [34]
    Hue T, Trent JS, Osseo-Asare K (1989) J Membr Sci 45: 261CrossRefGoogle Scholar
  35. [35]
    Gebel G, Lambard J (1997) Macromolecules 30: 7914CrossRefGoogle Scholar
  36. [36]
    Rollet A-L, Diat O, Gebel G (2002) J Phys Chem B 106: 3033CrossRefGoogle Scholar
  37. [37]
    Chen S, Lin YC (1994) Polym Mater Sci Eng 71: 702–703Google Scholar
  38. [38]
    Khalatur PG, Khokhlov AR, Mologin DA, Zheligovskaya EA (1998) Macromol Theory Simul 7: 299–316CrossRefGoogle Scholar
  39. [39]
    MacMillan B, Sharp AR, Armstrong RL (1999) Polymer 40: 2471, 2481CrossRefGoogle Scholar
  40. [40]
    Dreyfus B, Gebel G, Aldebert P, Pineri M, Escoubes M, Thomas M (1990) J Phys (Paris) 51: 1341CrossRefGoogle Scholar
  41. [41]
    Schweizer KS, Curro JG (1994) Adv Polym Sci 116: 319CrossRefGoogle Scholar
  42. [42]
    Schweizer KS, Curro JG (1997) Adv Chem Phys 98: 1CrossRefGoogle Scholar
  43. [43]
    Chandler D, Andersen HC (1972) J Chem Phys 57: 1930CrossRefGoogle Scholar
  44. [44]
    Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85: 5977CrossRefGoogle Scholar
  45. [45]
    Fraaije JGEM (1993) J Chem Phys 99: 9202CrossRefGoogle Scholar
  46. [46]
    Matsen MW, Schick M (1994) Phys Rev Lett 72: 2660CrossRefGoogle Scholar
  47. [47]
    Drolet F, Fredrickson GH (1999) Phys Rev Lett 83: 4317CrossRefGoogle Scholar
  48. [48]
    Croxton CA (1974) Liquid State Physics. A Statistical Mechanical Introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. [49]
    Schweizer KS, Yethiraj A (1993) J Chem Phys 98: 9053CrossRefGoogle Scholar
  50. [50]
    Chandler D, Singh Y, Richardson DM (1984) J Chem Phys 81: 1975CrossRefGoogle Scholar
  51. [51]
    Khalatur PG, Khokhlov AR (1998) Molec Phys 93: 555Google Scholar
  52. [52]
    Khalatur PG, Zherenkova LV, Khokhlov AR (1998) Eur Phys J B 5: 881CrossRefGoogle Scholar
  53. [53]
    Khalatur PG, Talitskikh SK, Khokhlov AR (2002) Macromol Theory Simul 11: 566–586CrossRefGoogle Scholar
  54. [54]
    Flory PJ (1969) Statistical Mechanics of Chain Molecules. Wiley, New YorkGoogle Scholar
  55. [55]
    Ostrowska J, Norębska A (1983) Colloid Polym Sci 261: 93CrossRefGoogle Scholar
  56. [56]
    Elliott JA, Hanna S, Elliott AMS, Cooley GE (1999) Phys Chem Chem Phys 1: 4855–4863CrossRefGoogle Scholar
  57. [57]
    Urata S, Irisawa J, Takada A, Shinoda W, Tsuzuki S, Mikami M (2005) J Phys Chem B 109: 4269–4278CrossRefGoogle Scholar
  58. [58]
    Hsu WY, Barkley JR, Meakin P (1980) Macromolecules 13: 198CrossRefGoogle Scholar
  59. [59]
    Safran SA, Grest GS, Webman I (1985) Phys Rev 32: 506CrossRefGoogle Scholar
  60. [60]
    Netemeyer SC, Glandt ED (1986) J Chem Phys 85: 6054CrossRefGoogle Scholar
  61. [61]
    Zawodzinski Jr. TA, Neeman M, Sillerud LO, Gottesfeld S (1991) J Phys Chem 95: 6040–44CrossRefGoogle Scholar
  62. [62]
    Weber AZ, Newman JJ (2004) Electrochem Soc 151: A311CrossRefGoogle Scholar
  63. [63]
    Edmondson CA, Fontanella JJ (2002) Solid State Ionics 152–153: 355CrossRefGoogle Scholar
  64. [64]
    Jang SS, Molinero V, Cagin T, Goddard WA (2004) J Phys Chem B 108: 3149–3157CrossRefGoogle Scholar
  65. [65]
    Eikerling M, Paddison SJ, Pratt LR, Zawodzinski TA Jr (2003) Chem Phys Lett 368:108–114CrossRefGoogle Scholar
  66. [66]
    Krueger JJ, Simon PP, Ploehn HJ (2002) Macromolecules 35: 5630–5639CrossRefGoogle Scholar
  67. [67]
    Paddison SJ, Zawodzinski TA (1998) Solid State Ionics 113–115: 333CrossRefGoogle Scholar
  68. [68]
    Galperin D, Khokhlov AR (2006) Macromol Theory Simul 15: 137–146.Google Scholar
  69. [69]
    Kreuer KD (2003) Handbook of Fuel Cells – Fundamentals, Technology and Applications. Volume 3 – Fuel Cell Technology and Applications, Vielstich W, Lamm A, Gasteiger H (eds.), J Wiley & Sons, Chichester, UKGoogle Scholar
  70. [70]
    Khalatur PG, Khokhlov AR (2000) J Chem Phys 112: 4849–4861CrossRefGoogle Scholar
  71. [71]
    Young SK, Trevino SF, Tan NCB (2002) J Polym Sci, Part B: Polym Phys 40: 387–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dmitry Galperin
    • 1
  • Pavel G. Khalatur
    • 1
  • Alexei R. Khokhlov
    • 1
  1. 1.Physics DepartmentMoscow State UniversityRussia

Personalised recommendations