Advertisement

Atomistic Structural Modelling of Ionomer Membrane Morphology

  • J. A. Elliott
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

The aim of this chapter is to provide a concise review and synthesis, intended mainly for the non-specialist, of some of the more recent (post-1997) applications of atomisticcomputer simulation techniques, chiefly classical molecular dynamics (MD) and Monte Carlo (MC) methods, with some discussion of quantum chemical methods, including semi-empirical (SE) and ab initio molecular orbital (MO) and density functional (DFT) approaches, to the study of perfluorosulphonate ionomer (PFSI) membrane morphology at the level of the fluorocarbon matrix and ionic ‘clusters’, and the influence that this has on ion transport. The focus will be mainly on perfluorosulphonate systems, since these are of most widespread industrial interest, but some of the results are illustrated by comparison with those from membrane systems involving hydrocarbon-based ionomers. Since they are covered elsewhere in this volume, we specifically exclude from consideration in this chapter those atomistic...

Keywords

Monte Carlo Side Group Diblock Copolymer Random Copolymer Sulphonic Acid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

JAE would like to acknowledge helpful discussions with S. J. Paddison and K.-D. Kreuer during the writing of this chapter.

References

  1. [1]
    M. R. Tant, K. A. Mauritz and G. L. Wilkes (eds.) Ionomers : Synthesis, Structure, Properties and Applications, (Blackie Academic & Professional, Glasgow, 1997).Google Scholar
  2. [2]
    K. A. Mauritz and R. B. Moore, Chemical Reviews 104, 4535 (2004).CrossRefGoogle Scholar
  3. [3]
    A. Eisenberg and H. L. Yeager, Perfluorinated ionomer membranes (American Chemical Society, Washington, DC, 1982).CrossRefGoogle Scholar
  4. [4]
    C. Heitner-Wirguin, Journal of Membrane Science 120, 1 (1996).CrossRefGoogle Scholar
  5. [5]
    S. Rieberer and K. H. Norian, Ultramicroscopy 41, 225 (1992).CrossRefGoogle Scholar
  6. [6]
    M. Chomakova-Haefke, R. Nyffenegger and E. Schmidt, Applied Physics A 59, 151 (1994).CrossRefGoogle Scholar
  7. [7]
    Z. Porat, J. R. Fryer, M. Huxham, et al., Journal of Physical Chemistry 99, 4667 (1995).CrossRefGoogle Scholar
  8. [8]
    A. Lehmani, S. Durand-Vidal and P. Turq, Journal of Applied Polymer Science 68, 503 (1998).CrossRefGoogle Scholar
  9. [9]
    P. J. James, J. A. Elliott, T. J. McMaster, et al., Journal of Materials Science 35, 5111 (2000).CrossRefGoogle Scholar
  10. [10]
    E. J. Roche, M. Pineri, R. Duplessix, et al., Journal of Polymer Science 19, 1 (1981).Google Scholar
  11. [11]
    M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules 15, 136 (1982).CrossRefGoogle Scholar
  12. [12]
    G. Gebel and J. Lambard, Macromolecules 30, 7914 (1997).CrossRefGoogle Scholar
  13. [13]
    B. Loppinet, G. Gebel and C. E. Williams, Journal of Physical Chemistry B 101, 1884 (1997).CrossRefGoogle Scholar
  14. [14]
    J. A. Elliott, S. Hanna, A. M. S. Elliott, et al., Macromolecules 33, 4161 (2000).CrossRefGoogle Scholar
  15. [15]
    H. G. Haubold, T. Vad, H. Jungbluth, et al., Electrochimica Acta 46, 1559 (2001).CrossRefGoogle Scholar
  16. [16]
    L. Rubatat, A. L. Rollet, O. Diat, et al., Journal De Physique Iv 12, 197 (2002).CrossRefGoogle Scholar
  17. [17]
    S. K. Young, S. F. Trevino and N. C. B. Tan, Journal of Polymer Science Part B-Polymer Physics 40, 387 (2002).CrossRefGoogle Scholar
  18. [18]
    V. Barbi, S. S. Funari, R. Gehrke, et al., Polymer 44, 4853 (2003).CrossRefGoogle Scholar
  19. [19]
    G. Gebel, O. Diat and C. Stone, Journal of New Materials for Electrochemical Systems 6, 17 (2003).Google Scholar
  20. [20]
    C. L. Marx, D. F. Caulfield and S. L. Cooper, Macromolecules 6, 344 (1973).CrossRefGoogle Scholar
  21. [21]
    M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules 14, 1309 (1981).CrossRefGoogle Scholar
  22. [22]
    M. Falk, Canadian Journal of Chemistry 58, 1495 (1980).CrossRefGoogle Scholar
  23. [23]
    W. Y. Hsu and T. D. Gierke, Journal of Membrane Science 13, 307 (1983).CrossRefGoogle Scholar
  24. [24]
    M. Litt, Abstracts of Papers of the American Chemical Society 213, 33 (1997).Google Scholar
  25. [25]
    E. M. Lee, R. K. Thomas, A. N. Burgess, et al., Macromolecules 25, 3106 (1992).CrossRefGoogle Scholar
  26. [26]
    B. Loppinet and G. Gebel, Langmuir 14, 1977 (1998).CrossRefGoogle Scholar
  27. [27]
    L. Rubatat, A. L. Rollet, G. Gebel, et al., Macromolecules 35, 4050 (2002).CrossRefGoogle Scholar
  28. [28]
    H. W. Starkweather, Macromolecules 15, 320 (1982).CrossRefGoogle Scholar
  29. [29]
    R. Duplessix, M. Escoubes, B. Rodmacq, et al., in Water in Polymers, edited by S. P. Rowland (American Chemical Society, Washington, D.C., 1980), p. 487.Google Scholar
  30. [30]
    D. Marx, M. E. Tuckerman, J. Hutter, et al., Nature 397, 601 (1999).CrossRefGoogle Scholar
  31. [31]
    S. J. Paddison, R. Paul and T. A. Zawodzinski, Journal of Chemical Physics 115, 7753 (2001).CrossRefGoogle Scholar
  32. [32]
    R. Paul and S. J. Paddison, Solid State Ionics 168, 245 (2004).CrossRefGoogle Scholar
  33. [33]
    J. R. Bontha and P. N. Pintauro, Chemical and Engineering Science 49, 3835 (1994).CrossRefGoogle Scholar
  34. [34]
    A. R. Leach, Molecular Modelling: Principles And Applications (Prentice-Hall, Englewood NJ, 2001).Google Scholar
  35. [35]
    J. A. Elliott, in Introduction to Materials Modelling, edited by Z. H. Barber (Maney Publishing, London, UK, 2005), p. 120.Google Scholar
  36. [36]
    T. J. F. Day, A. V. Soudackov, M. Cuma, et al., Journal of Chemical Physics 117, 5839 (2002).CrossRefGoogle Scholar
  37. [37]
    E. Spohr, P. Commer and A. A. Kornyshev, Journal of Physical Chemistry B 106, 10560 (2002).CrossRefGoogle Scholar
  38. [38]
    S. Dapprich, I. Komaromi, K. S. Byun, et al., Journal of Molecular Structure-Theochem 462, 1 (1999).CrossRefGoogle Scholar
  39. [39]
    Y. A. Dyakov and Y. K. Tovbin, Russian Chemical Bulletin 44, 1186 (1995).CrossRefGoogle Scholar
  40. [40]
    X. D. Din and E. E. Michaelides, Aiche Journal 44, 35 (1998).CrossRefGoogle Scholar
  41. [41]
    J. A. Elliott, S. Hanna, A. M. S. Elliott, et al., Physical Chemistry Chemical Physics 1, 4855 (1999).CrossRefGoogle Scholar
  42. [42]
    J. Ennari, M. Elomaa and F. Sundholm, Polymer 40, 5035 (1999).CrossRefGoogle Scholar
  43. [43]
    S. L. Mayo, B. D. Olafson and W. A. Goddard, Journal of Physical Chemistry 94, 8897 (1990).CrossRefGoogle Scholar
  44. [44]
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., Journal of Chemical Physics. 79, 926 (1983).CrossRefGoogle Scholar
  45. [45]
    H. Sun, S. J. Mumby, J. R. Maple, et al., Journal of the American Chemical Society 116, 2978 (1994).CrossRefGoogle Scholar
  46. [46]
    H. Sun, S. J. Mumby, J. R. Maple, et al., Journal of Physical Chemistry 99, 5873 (1995).CrossRefGoogle Scholar
  47. [47]
    A. Vishnyakov and A. V. Neimark, Journal of Physical Chemistry B 104, 4471 (2000).CrossRefGoogle Scholar
  48. [48]
    D. Rivin, G. Meermeier, N. S. Schneider, et al., Journal of Physical Chemistry B 108, 8900 (2004).CrossRefGoogle Scholar
  49. [49]
    A. Vishnyakov and A. V. Neimark, Journal of Physical Chemistry B 105, 7830 (2001).CrossRefGoogle Scholar
  50. [50]
    D. B. Holt, B. L. Farmer, K. S. Macturk, et al., Polymer 37, 1847 (1996).CrossRefGoogle Scholar
  51. [51]
    S. S. Jang, M. Blanco, W. A. Goddard, et al., Macromolecules 36, 5331 (2003).CrossRefGoogle Scholar
  52. [52]
    H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, Journal of Physical Chemistry 91, 6269 (1987).CrossRefGoogle Scholar
  53. [53]
    M. E. Van Leeuwen and B. Smit, Journal of Physical Chemistry 99, 1831 (1995).CrossRefGoogle Scholar
  54. [54]
    J. A. Elliott, S. Hanna, A. M. S. Elliott, et al., Polymer 42, 2251 (2001).CrossRefGoogle Scholar
  55. [55]
    X. Gong, A. Bandis, A. Tao, et al., Polymer 42, 6485 (2001).CrossRefGoogle Scholar
  56. [56]
    A. Vishnyakov and A. V. Neimark, Journal of Physical Chemistry B 105, 9586 (2001).CrossRefGoogle Scholar
  57. [57]
    S. T. Cui, J. I. Siepmann, H. D. Cochran, et al., Fluid Phase Equilibria 146, 51 (1998).CrossRefGoogle Scholar
  58. [58]
    D. Brown, J. H. R. Clarke, M. Okuda, et al., Journal of Chemical Physics 100, 6011 (1994).CrossRefGoogle Scholar
  59. [59]
    R. Auhl, R. Everaers, G. S. Grest, et al., Journal of Chemical Physics 119, 12718 (2003).CrossRefGoogle Scholar
  60. [60]
    S. Urata, J. Irisawa, A. Takada, et al., Journal of Physical Chemistry B 109, 4269 (2005).CrossRefGoogle Scholar
  61. [61]
    G. J. Martyna, M. E. Tuckerman, D. J. Tobias, et al., Molecular Physics 87, 1117 (1996).CrossRefGoogle Scholar
  62. [62]
    H. C. Andersen, Journal of Chemical Physics 72, 2384 (1980).CrossRefGoogle Scholar
  63. [63]
    S. Urata, J. Irisawa, A. Takada, et al., Physical Chemistry Chemical Physics 6, 3325 (2004).CrossRefGoogle Scholar
  64. [64]
    P. G. Khalatur, S. K. Talitskikh and A. R. Khokhlov, Macromolecular Theory and Simulations 11, 566 (2002).CrossRefGoogle Scholar
  65. [65]
    D. A. Mologin, P. G. Khalatur and A. R. Kholhlov, Macromolecular Theory and Simulations 11, 587 (2002).CrossRefGoogle Scholar
  66. [66]
    P. J. Flory, Statistical Mechanics of Chain Molecules (Oxford University Press, Oxford, 1989).Google Scholar
  67. [67]
    P. G. Khalatur, A. R. Khokhlov, D. A. Mologin, et al., Macromolecular Theory and Simulations 7, 299 (1998).CrossRefGoogle Scholar
  68. [68]
    T. D. Gierke, G. E. Munn and F. C. Wilson, Journal of Polymer Science. 19, 1687 (1981).Google Scholar
  69. [69]
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
  70. [70]
    D. H. Rothman and S. Zaleski, Reviews of Modern Physics 66, 1417 (1994).CrossRefGoogle Scholar
  71. [71]
    W. J. MacKnight, W. P. Taggart and R. S. Stein, Journal of Polymer Science.: Polymer Symposia, 45 113, (1974).CrossRefGoogle Scholar
  72. [72]
    D. J. Yarusso and S. L. Cooper, Macromolecules 16, 1871 (1983).CrossRefGoogle Scholar
  73. [73]
    S. S. Jang, V. Molinero, T. Cagin, et al., Journal of Physical Chemistry B 108, 3149 (2004).CrossRefGoogle Scholar
  74. [74]
    S. S. Jang, V. Molinero, T. Cagin, et al., Solid State Ionics 175, 805 (2004).CrossRefGoogle Scholar
  75. [75]
    M. Levitt, M. Hirshberg, R. Sharon, et al., Journal of Physical Chemistry B 101, 5051 (1997).CrossRefGoogle Scholar
  76. [76]
    S. Nose and M. L. Klein, Molecular Physics 50, 1055 (1983).CrossRefGoogle Scholar
  77. [77]
    S. Nose, Molecular Physics 52, 255 (1984).CrossRefGoogle Scholar
  78. [78]
    S. Nose, Molecular Physics 57, 187 (1986).CrossRefGoogle Scholar
  79. [79]
    U. W. Schmitt and G. A. Voth, Journal of Physical Chemistry B 102, 5547 (1998).CrossRefGoogle Scholar
  80. [80]
    U. W. Schmitt and G. A. Voth, Journal of Chemical Physics 111, 9361 (1999).CrossRefGoogle Scholar
  81. [81]
    T. J. F. Day, U. W. Schmitt and G. A. Voth, Journal of the American Chemical Society 122, 12027 (2000).CrossRefGoogle Scholar
  82. [82]
    S. Walbran and A. A. Kornyshev, Journal of Chemical Physics 114, 10039 (2001).CrossRefGoogle Scholar
  83. [83]
    M. K. Petersen, F. Wang, N. P. Blake, et al., Journal of Physical Chemistry B 109, 3727 (2005).CrossRefGoogle Scholar
  84. [84]
    S. J. Paddison and T. A. Zawodzinski, Solid State Ionics 115, 333 (1998).CrossRefGoogle Scholar
  85. [85]
    S. J. Paddison, L. R. Pratt and T. A. Zawodzinski, Journal of New Materials for Electrochemical Systems 2, 183 (1999).Google Scholar
  86. [86]
    S. J. Paddison, Journal of New Materials for Electrochemical Systems 4, 197 (2001).Google Scholar
  87. [87]
    S. J. Paddison and J. A. Elliott, Journal of Physical Chemistry A 109, 7583 (2005).CrossRefGoogle Scholar
  88. [88]
    S. J. Paddison and J. A. Elliott, Solid State Ionics, 177, 2385 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. A. Elliott
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridge

Personalised recommendations