Advertisement

Modeling the State of the Water in Polymer Electrolyte Membranes

  • Reginald Paul
Part of the Topics in Applied Physics book series (TAP, volume 113)

Introduction

The practical details for the construction and operation of polymer electrolyte membrane (PEM) fuel cells are now reasonably familiar topics which do not require further elaboration in this chapter. It should be evident; however, that one of the features of primary importance in the operation of such a cell is the efficient conduction of the protons through the membrane.

Extensive research has gone into understanding the conduction of protons in a number of different media [1]. A typical hydrated “state-of-the-art” PEM is a system with two phases, one phase being the polymer backbone separated from a second phase composed of a random network of hydrated ion-conducting channels with strong internal electrical fields. Both, as a result of being present in a confined state and in an electrical field the water in the channels display properties that are strikingly different from those of bulk water. It is impossible for us to do justice to the abundance of literature...

Keywords

Pore Wall Bulk Water Internal Field Anionic Site Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    K. D. Kreuer, Chem. Mater., 8, 610 (1996).CrossRefGoogle Scholar
  2. [2]
    G. Gompper, M. Hauser and A. A. Kornyshev, J. Chem. Phys., 101 (4), 3378 (1994).CrossRefGoogle Scholar
  3. [3]
    J. R. Bontha and P. N. Pintauro, Chem. Eng. Sci., 49 (No. 23), 3835 (1994).CrossRefGoogle Scholar
  4. [4]
    A. Guzman-Garcia, P. N. Pintauro, and M. W. Verbrugge, AIChE J, 36, 1061 (1990).CrossRefGoogle Scholar
  5. [5]
    P. N. Pintauro and M. W. Verbrugge, J. Memb. Sci., 44, 197 (1989).CrossRefGoogle Scholar
  6. [6]
    Y. Gur, I. Ravina, and A. Babchin, J. Colloid Interface Sci., 64, 333 (1978).CrossRefGoogle Scholar
  7. [7]
    F. Booth, J. Chem. Phys., 19, 391 (1950).CrossRefGoogle Scholar
  8. [8]
    S. Senapati and A. Chandra, J. Chem. Phys., 111, 1223 (1999).CrossRefGoogle Scholar
  9. [9]
    R. Paul and S. J. Paddison, J. Phys. Chem. B, 108, 13231 (2004).CrossRefGoogle Scholar
  10. [10]
    R. Paul and S. J. Paddison, Solid State Ionics, 168, 245 (2004).CrossRefGoogle Scholar
  11. [11]
    R. Paul and S. J. Paddison, “Development of Thermodynamic Methods for the Study of Nanopores”, in Nanotech 2002: 2nd International Conference on Computational Nanoscience and Nanotechnology, Puerto Rico April 2002.Google Scholar
  12. [12]
    L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Pergamon Press, New York, 1984), Chapter: 2 p. 44.Google Scholar
  13. [13]
    N. Grønbech-Jensen, G. Hummer, and K. M. Beardmore, Mol. Phys., 92, 941 (1997).Google Scholar
  14. [14]
    L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Pergamon Press, New York, 1984), Chapter: 2 p. 49.Google Scholar
  15. [15]
    D. A. McQuarrie: Statistical Mechanics (Harper Collins Publishers, New York, 1973) Chapter 13.Google Scholar
  16. [16]
    L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Pergamon Press, New York, 1984), Chapter: 2 p. 36.Google Scholar
  17. [17]
    K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev., 104, 4637 (2004).CrossRefGoogle Scholar
  18. [18]
    S. J. Paddison, L. R. Pratt, T. A. Zawodzinski, and D. W. Reagor, Fluid Phase Equilibria, 150, 235 (1998).CrossRefGoogle Scholar
  19. [19]
    S. J. Paddison and T. A. Zawodzinski Jr., Solid State Ionics, 115, 333 (1998).CrossRefGoogle Scholar
  20. [20]
    S. J. Paddison, L. R. Pratt, and T. A. Zawodzinski Jr., J. New Mater. Electrochem. Syst., 2, 183 (1999).Google Scholar
  21. [21]
    S. J. Paddison, L. R. Pratt, and T. A. Zawodzinski Jr., in Proton Conducting Membrane Fuel Cells II, S. Gottesfeld and T. F. Fuller, Editors, PV 98-27, p. 99, The Electrochemical Society Proceedings Series, Pennington, NJ (1999).Google Scholar
  22. [22]
    S. J. Paddison, R. Paul, and B. S. Pivovar, in Direct Methanol Fuel Cells, S. Narayanan, S. Gottesfeld and T. A. Zawodzinski, Editors, PV 01-04, The Electrochemical Society Proceedings Series, Pennington, NJ (2001).Google Scholar
  23. [23]
    M. Ise, Ph.D.-Thesis, University Stuttgart, 2000.Google Scholar
  24. [24]
    J. Kirkwood, J. Chem. Phys., 7, 911 (1939).CrossRefGoogle Scholar
  25. [25]
    L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).CrossRefGoogle Scholar
  26. [26]
    H. Fröhlich: Theory of Dielectrics (Oxford University Press, New York, 1949) Chapter 11.Google Scholar
  27. [27]
    P. Debye, Physikalische Zeitschrift, 13, 97 (1912).MATHGoogle Scholar
  28. [28]
    B. K. P. Scaife: Principles of Dielectrics (Clarendon Press, Oxford, 1989) Chapter 2.Google Scholar
  29. [29]
    R. Paul and S. J. Paddison, J. Chem. Phys., 115, 7762 (2001).CrossRefGoogle Scholar
  30. [30]
    R. Paul and S. J. Paddison, in Advances in Materials Theory and Modeling – Bridging Over Multiple-Length and Time Scales, edited by V. Bulatov, L. Colombo, F. Cleri, L. J. Lewis, and N. Mousseau (Materials Research Society, Warrendale, Pennsylvania, 2001), pp. A7.16.1–7.16.7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Reginald Paul
    • 1
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations