Proton Transport in Polymer Electrolyte Membranes Using Theory and Classical Molecular Dynamics

  • A. A. Kornyshev
  • E. Spohr
Part of the Topics in Applied Physics book series (TAP, volume 113)

The Membrane

Typical membrane materials used for polymer electrolyte fuel cells are ionomers which are composed of perfluorinated polymer backbones with side-chains containing acid groups, most commonly sulfonic acid (–SO3H) end groups. In contact with water, the sulfonic acid groups dissociate and thus introduce protons as charge carriers into the membrane. At the same time, the remaining SO3 side-chain end groups become hydrated and form a neutralising partially ordered environment in which protons and water molecules move. Preferential interactions between water, protons and SO3 groups as a consequence of hydrogen bonding and ion solvation and between the hydrophobic polymer backbones lead to phase separation on the nanometer scale between polymer and aqueous phase. Protons move in the aqueous sub-phase, and hence the presence of water is essential for the material to become proton conducting.

The membrane in the polymer electrolyte fuel cell (PEFC) is a key component. Not by...


Polymer Electrolyte Atomistic Simulation Direct Methanol Fuel Cell Proton Transport Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    K. D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem. Rev., 104, 4637 (2004).CrossRefGoogle Scholar
  2. [2]
    M. Ise, K.-D. Kreuer, J. Maier, Solid State Ionics, 125, 213 (1999).CrossRefGoogle Scholar
  3. [3]
    N. Agmon, Chem. Phys. Lett. 244, 256 (1995).CrossRefGoogle Scholar
  4. [4]
    D. Marx, M. E. Tuckerman, J. Hutter and M. Parrinello, Nature, 397, 601 (1999).CrossRefGoogle Scholar
  5. [5]
    A. A. Kornyshev, A. M. Kuznetsov, E. Spohr and J. Ulstrup, J. Phys, Chem. B, 107, 35551 (2003).CrossRefGoogle Scholar
  6. [6]
    T. E. Springer, T .A. Zawodsinski and S. Gottesfeld, J. Electrochem. Soc., 138, 2334 (1991).CrossRefGoogle Scholar
  7. [7]
    N. Nguen and R. E. White, J. Electrochem. Soc., 140, 2178 (1993).CrossRefGoogle Scholar
  8. [8]
    A. C. West and T. F. Fuller, J. Appl. Electrochem., 26, 557 (1996).CrossRefGoogle Scholar
  9. [9]
    M. Eikerling, A. A. Kornyshev and A. A. Kulikovsky, Physical modelling of polymer electrolyte fuel cell components, cells and stacks, in Encyclopaedia of Electrochemistry, 5 (D. Macdonald, Ed.), 2004 (in Press).Google Scholar
  10. [10]
    R. Mosdale, G. Gebel and M. Pineri, J. Membrane Sci., 118, 269 (1996).CrossRefGoogle Scholar
  11. [11]
    M. Eikerling, Yu. I. Kharkats, A. A. Kornyshev and Yu. M. Volfkovich, J. Electrochem. Soc., 145, 2684 (1998).CrossRefGoogle Scholar
  12. [12]
    A. A. Kulikovsky, J. Electrochem. Soc., 152, A1121 (2005).CrossRefGoogle Scholar
  13. [13]
    K. D. Kreuer, J. Membrane Sci., 185, 29(2001).CrossRefGoogle Scholar
  14. [14]
    V. Arcella, A. Ghielmi and G. Tommasi, in Advanced Membrane Technology, 984, New York Acad. Sci, New York, 2003, p. 226.Google Scholar
  15. [15]
    F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu and H. M. Zhang, J. Membrane Sci., 212, 213 (2003).CrossRefGoogle Scholar
  16. [16]
    M. E. Schuster, W. H. Meyer, Ann. Rev. Mater. Res., 33, 233 (2003).CrossRefGoogle Scholar
  17. [17]
    J. Roziere and D. J. Jones, Ann. Rev. Mater. Res., 33, 503 (2003).CrossRefGoogle Scholar
  18. [18]
    L. Jorissen, V. Gogel, J. Kerres and J. Garche, J. Power Sources, 105, 267 (2002).CrossRefGoogle Scholar
  19. [19]
    G. Alberti, M. Casciola, L. Massinelli and B. Bauer, J. Membrane Sci., 185, 73 (2001).CrossRefGoogle Scholar
  20. [20]
    G. Inzelt, M. Pineri, J. W. Schultze and M. A. Vorotyntsev, Electrochim. Acta., 45, 2403 (2000).CrossRefGoogle Scholar
  21. [21]
    T. Schultz, S. Zhou and K. Sundmacher, Chem. Eng. Technol., 24, 1223 (2001).CrossRefGoogle Scholar
  22. [22]
    P. Staiti, A. S. Arico, V. Baglio, F. Lufrano, E. Passalacqua and V. Antonucci, Solid State Ionics, 145, 101 (2001).CrossRefGoogle Scholar
  23. [23]
    J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, J. Electrochem. Soc., 142, L121 (1995).CrossRefGoogle Scholar
  24. [24]
    J. E. McGrath, M. Hickner, F. Wang, and Y.- S. Kim, in PCT Int. Appl. (Virginia Tech Intellectual Properties, Inc., USA), Wo. (2002). p. 46.Google Scholar
  25. [25]
    C. Stone, A. E. Steck and R. D. Lousenberg, in PCT Int. Appl. (Ballard Power Systems Inc., Can.), Wo. (1996) p. 28.Google Scholar
  26. [26]
    J. Roziere, D. Jones, L. Tchicaya-Boukary and B. Bauer, in PCT Int. Appl., (Fuma-Tech G.m.b.H., Germany). Wo., 2002, p. 53.Google Scholar
  27. [27]
    J. M. Gascoyne, G. A. Hards and T. R. Ralph, in PCT Int. Appl., (Johnson Matthey Public Limited Company, UK). Wo. (2002), p. 15.Google Scholar
  28. [28]
    A. S. Davydov, Solitons in molecular systems, 2 nd ed, Kluwer, Dordrecht, London 1991.CrossRefGoogle Scholar
  29. [29]
    Proton transfer in hydrogen bonded systems, Ed. T. Bountis, NATO ASI Series, B: Physics 291, Plenum, New York, 1992.Google Scholar
  30. [30]
    M. A. F. Robertson and H. L. Yeager, Structure and properties of perfluorinated ionomers, in Ionomers. Synthesis, Structure, Properties and Applications (M. R. Tant, K. A. Mauritz and G. L. Wilkes), Chapman and Hall, London, 1997, p. 290.Google Scholar
  31. [31]
    K. A. Mauritz, Morphological theories, in Ionomers. Synthesis, structure, properties and applications (M. R. Tant, K. A. Mauritz, G. L. Wilkes), Chapman and Hall, London, 1997, p. 95.Google Scholar
  32. [32]
    A. S. Ioselevich, A. A. Kornyshev, and J. H. G. Steinke, J. Phys. Chem. B 108, 11953.Google Scholar
  33. [33]
    T. D. Gierke and W. Y. Hsu, ACS Symp. Ser., 180 , 283 (1982).CrossRefGoogle Scholar
  34. [34]
    T. D. Gierke, G. E. Munn and F. C. Wilson, J. Polym. Sci. Pt. B-Polym. Phys.,19, 1687 (1981).CrossRefGoogle Scholar
  35. [35]
    M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules, 14, 1309 (1981); 15, 136–144 (1982).Google Scholar
  36. [36]
    M. Pineri, R. Duplessix and F. Volino. ACS Symp. Ser., 180, 249 (1982).CrossRefGoogle Scholar
  37. [37]
    G. Xu, Polym. J., 25, 397 (1993); 26, 840 (1994).Google Scholar
  38. [38]
    S. F. Timashev, Dokl. Acad. Nauk SSSR, 283, 930 (1985).Google Scholar
  39. [39]
    N. A. Plate, Brush-Like Polymers and Liquid Crystals; Khimija: Moscow, 1980.Google Scholar
  40. [40]
    H. W. Starkweather, Jr. Macromolecules, 15, 320 (1982).CrossRefGoogle Scholar
  41. [41]
    M. H. Litt, ACS Polymer Polymer Preprints, 38, 80 (1997).Google Scholar
  42. [42]
    J. Halin, F. N. Buchi, O. Haas, M. Stamm, Electrochim. Acta, 39, 1303 (1994); B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, M. Thomas, J. Phys. (France), 51, 1341 (1990); G. Gebel, J. Lambard, Macromolecules, 30, 7914 (1997); G. Gebel, Polymer, 41, 5829 (2000); J. A. Elliott, S. Hanna, A. M. S. Elliott, G. E. Cooley, Macromolecules, 33, 4161 (2000); P. J. James, J. A. Elliott, T. J. McMaster, J. M. Newton, A. M. S. Elliott, S. Hanna, M. J. Miles, J. Material. Sci., 35, 5111 (2000).Google Scholar
  43. [43]
    J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming and Yu. I. Volfkovich, J. Electrochem. Soc., 145, 2677–2683 (1998).CrossRefGoogle Scholar
  44. [44]
    A. Gruger, A. Regis, T. Schmatko and Ph. Colomban, Vib. Spectrosc., 26, 215 (2001).CrossRefGoogle Scholar
  45. [45]
    J. A. Elliott, S. Hanna, A. M. S. Elliott and G. E. Cooley, Macromolecules, 33, 4161 (2000).CrossRefGoogle Scholar
  46. [46]
    A. Eisenberg, Macromolecules, 3, 147 (1970)CrossRefGoogle Scholar
  47. [47]
    A. Eisenberg and M. King, Ion-Containing Polymers, Academic Press, New York, 1977.Google Scholar
  48. [48]
    K. A. Mauritz, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C28, 65 (1988).CrossRefGoogle Scholar
  49. [49]
    D. Y. Yasusso and S. L. Cooper, Macromolecules, 16, 1871 (1983).CrossRefGoogle Scholar
  50. [50]
    F. P. Orfino and S. Holdcroft, J. New. Mat. Electrochem. Syst., 3, 285 (2000).Google Scholar
  51. [51]
    A. Vishnyakov and A. V. Neimark, J. Phys. Chem. B, 105, 9586, (2001).CrossRefGoogle Scholar
  52. [52]
    S. S. Jang, Sh.-T. Lin, T. Cagin, V. Molinero and W. A. Goddard III, J. Phys. Chem. B, 109, 10154 (2005).CrossRefGoogle Scholar
  53. [53]
    D. Seeliger, C. Hartnig and E. Spohr, Eletrochim. Acta 50, 4234 (2005).CrossRefGoogle Scholar
  54. [54]
    M. K. Petersen, F. Wang, N. P. Blake, H. Metiu and G. A. Voth, J. Phys. Chem. B 109, 3727 (2005).CrossRefGoogle Scholar
  55. [55]
    E. Spohr, J. Mol. Liquids 136, 288 (2007).Google Scholar
  56. [56]
    G. Pourcelly and C. Gavach, Perfluorinated membranes, in Proton Conductors (Ph. Colomban, Ed.), Cambridge University Press, Cambridge, 1992, pp.294–31.Google Scholar
  57. [57]
    S. Gottesfeld, and T. A. Zawodsinski, Polymer electrolyte fuel cells, In Advances in Electrochemical Science an Engineering, 5 (C. Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias, Eds.), Wiley-VCH, Weinheim, Germany, 1997, p. 195–301.Google Scholar
  58. [58]
    M. Cappadonia, J. W. Erning and U. Stimming, J. Electroanal. Chem., 287, 163 (1990).CrossRefGoogle Scholar
  59. [59]
    M. Cappadonia, J. W. Erning, S. M. S. Niaki and U. Stimming, Solid State Ionics., 287, 163 (1990).Google Scholar
  60. [60]
    M. Eikerling, A. A. Kornyshev and U. Stimming, J. Phys. Chem., B 101, 10807 (1997).Google Scholar
  61. [61]
    M. Eikerling and A. A. Kornyshev, J. Electroanal. Chem., 502, 1-14 (2001).CrossRefGoogle Scholar
  62. [62]
    M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup and S. Walbran, J. Phys. Chem, B105, 3646 (2001).Google Scholar
  63. [63]
    E. Spohr, P. Commer, and A. A. Kornyshev, J. Phys. Chem. B106, 10560 (2002).Google Scholar
  64. [64]
    P. Commer, A. G. Cherstvy, E. Spohr and A. A. Kornyshev, Fuel Cells, 2, 127 (2003).CrossRefGoogle Scholar
  65. [65]
    S. Walbran and A. A. Kornyshev, J. C hem. Phys. 114, 1039 (2001).Google Scholar
  66. [66]
    P. Commer, PhD thesis, Heinrich Heine Universität, Düsseldorf, 2003.Google Scholar
  67. [67]
    P. Commer, C. Hartnig, D. Seeliger and E. Spohr, Mol. Simulation 30, 755 (2004).CrossRefGoogle Scholar
  68. [68]
    E. Spohr, Mol. Simulation 30, 107 (2004).CrossRefGoogle Scholar
  69. [69]
    M. Fujimura, T. Hashimoto, H. Kawai, Macromolecules, 14, 1309 (1981); 15, 136–144 (1982).Google Scholar
  70. [70]
    C. L. Marx, D. C. Caulfield, S. L. Cooper, Macromolecules, 6, 344 (1973).CrossRefGoogle Scholar
  71. [71]
    A. S. Ioselevich, A. A. Kornyshev, and N. Marchal, unpublished results. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. A. Kornyshev
  • E. Spohr

There are no affiliations available

Personalised recommendations