Advertisement

Nanocrystalline Silicon Ballistic Electron Emitter

  • Takuya Komoda
  • N. Koshida
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The finding of visible photoluminescence from nanocrystalline silicon (NS) at room temperature and the development of light-emission device was important step toward silicon-based optoelectronics technology. Subsequent research revealed that these light emission may occur due to silicon nanostructure and intensive research and development to achieve high-efficient, high-intensity, and tunable visible light-emitting devices based on NS was conducted all over the world. In 1998, a novel cold cathode technology based on nanocrystallised polysili-con (NPS) layer was reported by the authors. Its electron emission characteristics strongly suggest that electrons injected to the NPS layer are transported quasibal-listically. It showed various excellent characteristics as compared with the conventional FEDs and it was termed ballistic electron surface-emitting display (BSD). In order to demonstrate the possibility of the realisation of large panel FPD, we firstly developed quartz glass-based BSD. We also developed low temperature process to fabricate the BSD on a TFT and a PDP glass substrate. Electrochemical oxidation technique was one of the key process concepts to reduce process temperature. It was also shown that the BSD had excellent thermal stability and a frit-sealed model was fabricated. In this section, we first overview the characteristics of the BSD cold cathode and discuss the mechanism of ballistic electron emission model from the NPS nanostructure. Subsequently, we discuss the relationship between emission efficiency and nanostructure. Finally, w e demonstrate the BSD on glass substrate. We describe the 2.6- and 7.6-in. diagonal full-colour BSD fabricated on a glass substrate with low temperature process and demonstrate strong possibility of the process compatibility for a large panel BSD.

Keywords

Electron Emission Thermal Desorption Spectrometry Emission Current Density Cold Cathode Nanocrystalline Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank the colleagues of the Advanced Technology Research Laboratory at Matsushita Electric Works, Ltd. and the Tokyo University of Agriculture and Technology for their useful discussion and sample measurement support. Also, the authors would like to thank various companies for their effort to development of the materials and equipments for BSD technology.

References

  1. 1.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
  2. 2.
    N. Koshida and H. Koyama, Jpn. J. Appl. Phys. 30, L1221 (1991).CrossRefGoogle Scholar
  3. 3.
    Y.H. Xie, W.L. Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M. Macaulay and T.D. Harris, J. Appl. Phys. 71, 2403 (1992).CrossRefGoogle Scholar
  4. 4.
    B. Gelloz and N. Koshida, Jpn. J. Appl. Phys. 43, 1981 (2004).CrossRefGoogle Scholar
  5. 5.
    N. Koshida, T. Ozaki, X. Sheng and H. Koyama, Jpn. J. Appl. Phys., Part 2 34, L705 (1995).CrossRefGoogle Scholar
  6. 6.
    C.A. Spindt, J. Appl. Phys. 39, 3504 (1968).CrossRefGoogle Scholar
  7. 7.
    M. Suzuki, T. Kusunoki, H. Shinada and T. Yaguchi, J. Vac. Sci. Technol. B 13, 2201 (1995).CrossRefGoogle Scholar
  8. 8.
    T. Komoda, X. Sheng and N. Koshida, Mat. Res. Soc. Symp. Proc. 509, 187 (1998).Google Scholar
  9. 9.
    T. Komoda, X. Sheng and N. Koshida, J. Vac. Sci. Technol. B 17, 1076 (1999).CrossRefGoogle Scholar
  10. 10.
    T. Komoda, Y. Honda, T. Hatai, Y. Watabe, T. Ichihara, K. Aizawa, Y. Kondo and N. Koshida, IDW'99, Technical Digest FED3–2, 939 (1999).Google Scholar
  11. 11.
    T. Komoda, Y. Honda, T. Hatai, Y. Watabe, T. Ichihara, K. Aizawa, Y. Kondo and N. Koshida, SID'00, Digest of Technical Papers 28.4, 428 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Komoda, Y. Honda, T. Hatai, Y. Watabe, T. Ichihara, K. Aizawa and N. Koshida, SID'01, Digest of Technical Papers 14.1(Invited), 188 (2001).CrossRefGoogle Scholar
  13. 13.
    T. Komoda, Y. Honda, T. Ichihara, T. Hatai, T. Takegawa, Y. Watabe, K. Aizawa, V. Vezin and N. Koshida, SID'02, Digest of Technical Papers 39.3, 1128 (2002).CrossRefGoogle Scholar
  14. 14.
    T. Ichihara, Y. Honda, K. Aizawa, T. Komoda and N. Koshida, J. Cryst. Growth, 237, 1915 (2002).CrossRefGoogle Scholar
  15. 15.
    T. Ichihara, Y. Honda, T. Baba, Y. Takegawa, T. Watabe, T. Hatai, K. Aizawa, T. Komoda, V. Vezin and N. Koshida, IDW'02, Technical Digest FED1–4, 1033 (2002).Google Scholar
  16. 16.
    C.A. Spindt, C.E. Holland, A. Rosengreen and I. Brodie, J. Vac. Sci. Technol. B 11, 468 (1993).CrossRefGoogle Scholar
  17. 17.
    H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).CrossRefGoogle Scholar
  18. 18.
    R. Sedlacik, F. Karel, J. Oswald, A. Fejfa, I. Pelant and J. Kocka, Thin Solid Films 255, 269 (1995).CrossRefGoogle Scholar
  19. 19.
    T. Matsukawa, S. Kanemaru, M. Nagao and J. Itoh, IDW'99, Technical Digest FED3–3, 943 (1999).Google Scholar
  20. 20.
    A. Kojima and N. Koshida, Jpn. J. Appl. Phys. 42, 2395 (2003).CrossRefGoogle Scholar
  21. 21.
    N. Koshida, X. Sheng and T. Komoda, Appl. Surf. Sci. 146, 371 (1999).CrossRefGoogle Scholar
  22. 22.
    X. Sheng, A. Kojima, T. Komoda and N. Koshida, J. Vac. Sci. Technol. B 19, 64 (2001).CrossRefGoogle Scholar
  23. 23.
    L. E. Brus, P. F. Szajowski, W. L. Wilson, T. D. Wilson, T. D. Harris, S. Schuppler and P. H. Citrin, J. Am. Chem. Soc. 117, 2915 (1995).CrossRefGoogle Scholar
  24. 24.
    H. Fukuda, J. L. Hoyt, M. A. McCord and R. F. W. Pease, Appl. Phys. Lett. 70, 333 (1997).CrossRefGoogle Scholar
  25. 25.
    T. Ichihara, T. Hatai, K. Aizawa, T. Komoda and N. Koshida, J. Vac. Sci. Technol. B 22, 57 (2004).CrossRefGoogle Scholar
  26. 26.
    S. Uno, K. Nakazato, S. Yamaguchi, A. Kojima, N. Koshida and H. Mizuta, IEEE Trans. Nanotechnol. 1, 1 (2003).Google Scholar
  27. 27.
    A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi and J. Lagowski, Appl. Phys. Lett. 65, 1436 (1994).CrossRefGoogle Scholar
  28. 28.
    D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrova-Koch and F. Koch, Appl. Phys. Lett. 64, 214 (1994).CrossRefGoogle Scholar
  29. 29.
    B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
  30. 30.
    N. Xu, J. Chen and S. Deng, Appl. Phys. Lett. 76, 2463 (2000).CrossRefGoogle Scholar
  31. 31.
    Y. Lau, Y. Liu and R. Parker, Phys. Plasmas, 1, 2082 (1994).CrossRefGoogle Scholar
  32. 32.
    T. Komoda, X. Sheng and N. Koshida, J. Vac. Sci. Technol. B 17, 1076 (1999).CrossRefGoogle Scholar
  33. 33.
    A. C. Adams, VLSI Technology, ed. S. M. Sze, p. 103 (McGraw Hill, New York, N Y, 1983).Google Scholar
  34. 34.
    E. H. Nicollian, C. N. Berglund, P. F. Schmidt and J. M. Andrews, J. Appl. Phys. 42, 5654 (1971).CrossRefGoogle Scholar
  35. 35.
    T. Ichihara, Y. Honda, T. Baba, T. Komoda and N. Koshida, J. Vac. Sci. Technol. B 22, 1784 (2004).CrossRefGoogle Scholar
  36. 36.
    H. Okumura and T. Takahagi, TRC News 49, 30 (1994) (in Japanese).Google Scholar
  37. 37.
    D.K. Biegelsen, R.A. Street, C.C. Tsai and J.C. Knights, Phys. Rev. B 20, 4839 (1979).CrossRefGoogle Scholar
  38. 38.
    T. Ichihara, T. Baba, T. Komoda and N. Koshida, J. Vac. Sci. Technol. B 22, 1372 (2004).CrossRefGoogle Scholar
  39. 39.
    M. Cardona and L. Ley, Photoemission in Solids 1 (Springer, Berlin, 1978).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Takuya Komoda
    • 1
  • N. Koshida
  1. 1.Advanced Technologies Development LaboratoryPanasonic Electric Works, LtdJapan

Personalised recommendations