Electron Transport in Nanocrystalline Silicon

  • H. Mizuta
  • S. Uno
  • N. Mori
  • S. Oda
  • N. Koshida
Part of the Nanostructure Science and Technology book series (NST)

1. Introduction To Electron Transport In Nanocrystalline Silicon

In recent years, electron transport properties of nanocrystalline Si (nc-Si) have attracted increasing interests along with the remarkable progress of nc-Si material control technologies. The nanometer-scale size of individual Si nanocrystals leads to various electronic and photonic properties associated with quantum confinement, single-electron tunneling, and charge quantization. These unique properties have been exploited for fabricating experimental single-electron transistors and memories [1, 2], ballistic electron emitters [3], and silicon light emitting devices [4]. Strong tunnel coupling between double nc-Si dots via ultra thin interface layers may also be utilized to realize a charge quantum bit (qubit), based on the molecular states formed in the structure [5]. It has also been pointed out very recently that the phonon states and electron—phonon interactions in the nc-Si differ very much from those for bulk Si...


Acoustic Phonon Resonant Tunneling Coulomb Blockade Static Random Access Memory Phononic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to Dr. Y. Tsuchiya, Dr. K. Usami, Dr. M. Khalafalla, Dr. S. Huang, Dr. K. Nishiguchi (now of NTT Basic Res. Lab.), Dr. A. Dutta, Mr. T. Nakatsukasa (now of Toppan Printing Co. Ltd.), Mr. A. Surawijaya, Dr. Y. Kawata, Dr. A. Tanaka, Mr. N. Momo, Mr. T. Nagami, Mr. S. Higashijima, Mr. G. Yamahata, Mr. J. Ogi of Tokyo Institute of Technology, and Dr. Z.A.K. Durrani, Mr. A. Rafiq and Dr. J. Gorman of University of Cambridge for their valuable technical contributions. The authors also gratefully acknowledge Dr. D.A. Williams of Hitachi Cambridge Laboratory, Dr. S. Saito, Dr. T. Arai of Hitachi Central Research Laboratory, Dr. T. Shimada of Quantum 14 Co. Ltd., Prof. K. Nakazato of Nagoya University for very useful discussions.


  1. 1.
    K. Yano, T. Ishii, T. Hashimoto, T. Kobauashi, F. Murai, and K. Seki, Appl. Phys. Lett. 67, 828 (1995)CrossRefGoogle Scholar
  2. 2.
    Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, J. Appl. Phys. 94, 633 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Nishiguchi, X. Zhao, and S. Oda, J. Appl. Phys. 92, 2748 (2002)CrossRefGoogle Scholar
  4. 4.
    Y. Kanemitsu, S. Okamoto, M. Otobe, and S. Oda, Phys. Rev. B 55, R7375 (1997)CrossRefGoogle Scholar
  5. 5.
    M. Khalafallah, H. Mizuta, and Z.A.K. Durrani, Appl. Phys. Lett. 85, 2262 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Furuta, H. Mizuta, K. Nakazato, Y. T. Tan, T. Kamiya, Z. A. K. Durrani, H. Ahmed, and K. Taniguchi, Jpn. J. Appl. Phys, 40, L615 (2001)CrossRefGoogle Scholar
  7. 7.
    T. Kamiya, K. Nakahata, Y. T. Tan, Z.A.K Durrani, and I. Shimizu, J. Appl. Phys. 89, 6265 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Oda and M. Otabe, Mater. Res. Soc. Proc. 358, 721 (1995)Google Scholar
  9. 9.
    T. Ifuku, M. Otabe, A. Itoh, and S. Oda, Jpn. J. Appl. Phys. 36, 4031 (1997)CrossRefGoogle Scholar
  10. 10.
    A. Tanaka, G. Yamahata, Y. Tsuchiya, K. Usami, H. Mizuta, and S. Oda, Current Applied Physics 6, 344 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Tanaka, G.Yamahata, Y.Tsuchiya, K.Usami, H.Mizuta, and S.Oda, Proc. 5th IEEE Conference on Nanotechnology, Nagoya, July (2005)Google Scholar
  12. 12.
    B. I. Shlovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin (1984)Google Scholar
  13. 13.
    H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes, Carnbridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  14. 14.
    H. Grabert and M. H. Devoret, Eds., Single Charge Tunneling — Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series B, Plenum; New York (1991)Google Scholar
  15. 15.
    A. Dutta, S. Oda, Y. Fu, and M. Willandar, Jpn. J. Appl. Phys. 39, 4647 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, J. Appl. Phys. 94, 633 (2003)CrossRefGoogle Scholar
  17. 17.
    T. Kamiya, Z.A.K. Durrani, and H. Ahmed, Appl. Phys. Lett. 81, 2388 (2002)CrossRefGoogle Scholar
  18. 18.
    T. Kamiya, Y.-T. Tan, Z.A.K. Durrani, and H. Ahmed: J. Non-Cryst. Solids 299–302, 405 (2002)CrossRefGoogle Scholar
  19. 19.
    Z.A.K. Durrani, T. Kamiya, Y.T. Tan, H. Ahmed and N. Lloyd, Microelectronic Engineering 63, 267 (2002)CrossRefGoogle Scholar
  20. 20.
    H. Mizuta, Y. Furuta, T. Kamiya, Y. T. Tan, Z. A. K. Durrani, K. Nakazato, and H. Ahmed, Polycrystalline Semiconductors VII — Bulk Materials, Thin Films, and Devices, T. Sameshima, T. Fuyuki, H.P. Strunk, J.H. Werner eds., in Series ‘Solid State Phenomena’, Scitech Publ., Uettikon am See, Switzerland, 419 (2003)Google Scholar
  21. 21.
    K.K. Likharev, Proc. IEEE 87, 606 (1999)CrossRefGoogle Scholar
  22. 22.
    K.K. Likharev, Appl. Phys. Lett. 73, 2137 (1998)CrossRefGoogle Scholar
  23. 23.
    R.D. Tilley, J.H. Warner, K. Yamamoto, I. Matsuib, and H. Fujimori, Chem. Commun., 1833 (2005)Google Scholar
  24. 24.
    L. Mitas, J. Therrien, R. Twesten, G. Belomoin, and M. H. Nayfeh, Appl. Phys. Lett. 78, 1918 (2001)CrossRefGoogle Scholar
  25. 25.
    R.T Su and L. Esaki, Appl. Phys. Lett. 22, 562 (1973)CrossRefGoogle Scholar
  26. 26.
    Y. Ishikawa, T. Ishihara, M. Iwasaki, and M. Tabe, Electron. Lett. 37, 1456 (2003)Google Scholar
  27. 27.
    M. Fukuda, K.Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291 (1997)CrossRefGoogle Scholar
  28. 28.
    J. P. A. van der Wagt, Nanotechnology 10, 174 (1999)CrossRefGoogle Scholar
  29. 29.
    J. P. A. van der Wagt, A. C. Seabaugh, and E. A. Beam, III, IEEE Electron. Device Lett. 19, 7 (1998)CrossRefGoogle Scholar
  30. 30.
    A. C. Seabaugh, Y. C. Kao, J. Randall, W. Frensley, and A. Khatibzadeh, Jpn. J. Appl. Phys. 30, 3413 (1991)CrossRefGoogle Scholar
  31. 31.
    J. Randall, G. Frazier, A. Seabaugh, and T. Boerkaert, Microelectron. Eng. 32, 15 (1996)CrossRefGoogle Scholar
  32. 32.
    J. Berg, S. Bengtsson, and P. Lundgren, Solid-State Electron. 44, 2247 (2000)CrossRefGoogle Scholar
  33. 33.
    A. Surawijaya, H. Mizuta, and S. Oda, Jpn. J. Appl. Phys. 45, 3638 (2006) CrossRefGoogle Scholar
  34. 34.
    H. Mizuta, C. J. Goodings, M. Wagner, and S. Ho, J. Phys.: Condens. Matter 4, 8783, (1992)CrossRefGoogle Scholar
  35. 35.
    J. Gorman, D. Hasko, and D. Williams, Phys. Rev. Lett. 95, 090502 (2005)CrossRefGoogle Scholar
  36. 36.
    W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, L. P. Kouwenhoven, T. Fujisawa, and S. Tarucha, Rev. Mod. Phys. 75, 1 (2003)CrossRefGoogle Scholar
  37. 37.
    M. Khalafalla, H. Mizuta, and Z. A. K. Durrani, IEEE Trans. Nanotechnol. 2, 271 (2003)CrossRefGoogle Scholar
  38. 38.
    M. V. Fischetti and S. E. Laux, Phys. Rev. B, 38, 9721 (1988)CrossRefGoogle Scholar
  39. 39.
    R. H. Blick, D. Pfannkuche, R. J. Haug, K.v. Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998)CrossRefGoogle Scholar
  40. 40.
    I. Lee, S. M. Goodnick, M. Gulia, E. Molinari, and P. Lugli, Phys. Rev. B 51, 7046 (1995)CrossRefGoogle Scholar
  41. 41.
    R. Lassnig, Phys. Rev. B 30, 7132 (1984)CrossRefGoogle Scholar
  42. 42.
    N. Sawaki, Surf. Sci. 170, 537 (1986)CrossRefGoogle Scholar
  43. 43.
    N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989)CrossRefGoogle Scholar
  44. 44.
    K. Hirakawa, Phys. Rev. B 40, 3451 (1989)CrossRefGoogle Scholar
  45. 45.
    N. Mori and C. Hamaguchi, Semicond.Sci. Technol. 8, 197 (1993)CrossRefGoogle Scholar
  46. 46.
    N. Bannov, V. Mitin, and M. Stroscio, Physica Stat. Solidi B, 183, 131 (1994)CrossRefGoogle Scholar
  47. 47.
    N. Bannov, V. Aristov, V. Mitin, and M. Stroscio, Phys. Rev, B 51, 9930 (1995)CrossRefGoogle Scholar
  48. 48.
    E. P. Pokatilov, D. L. Nika, and A. Balandin, Appl. Phys. Lett. 85, 825 (2004)CrossRefGoogle Scholar
  49. 49.
    E. P. Pokatilov, D. L. Nika, and A. Balandin, J. Appl. Phys. 95, 5626 (2004)CrossRefGoogle Scholar
  50. 50.
    E. P. Pokatilov, D. L. Nika, and A. Balandin, Superlatt. Microstruct. 33, 155 (2003)CrossRefGoogle Scholar
  51. 51.
    N. Koshida, T. Ozaki, X. Sheng, and H. Koyama, Jpn. J. Appl. Phys. 34,. L705 (1995)CrossRefGoogle Scholar
  52. 52.
    N. Koshida, X. Sheng, and T. Komoda, Appl. Surf. Sci. 146, 371 (1999)CrossRefGoogle Scholar
  53. 53.
    T. Komoda, X. Sheng, and N. Koshida, J. Vac. Sci. Technol. B 17, 1076 (1999)CrossRefGoogle Scholar
  54. 54.
    R. W. Morse, J. Acoust. Soc. Am., 22, 219 (1950)CrossRefGoogle Scholar
  55. 55.
    S. Uno, N. Mori, K. Nakazato, N. Koshida, and H. Mizuta, J. Appl. Phys 97, 113506 (2005)CrossRefGoogle Scholar
  56. 56.
    S. Uno, N. Mori, K. Nakazato, N. Koshida, and H. Mizuta, Phys. Rev. B 72, 035337 (2005)CrossRefGoogle Scholar
  57. 57.
    S. Huang, K. Arai, K. Usami and S. Oda, IEEE Trans Nanotechnol. 3, 210 (2004)CrossRefGoogle Scholar
  58. 58.
    Y. Tsuchiya, K. Takai, N. Momo, T. Nagami, S. Yamaguchi, T. Shimada, H. Mizuta, and S. Oda, J. Appl. Phys. 100, 094306 (2006)CrossRefGoogle Scholar
  59. 59.
    S. Uno, K. Nakazato, S. Yamaguchi, A. Kojima, N. Koshida, and H. Mizuta, IEEE Trans. Nanotechnol. 2, 301 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • H. Mizuta
    • 1
  • S. Uno
  • N. Mori
  • S. Oda
  • N. Koshida
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations