Advertisement

Room Temperature Silicon Spin-Based Transistors

  • M. Cahay
  • S. Bandyopadhyay
Part of the Nanostructure Science and Technology book series (NST)

Abstract

In this review article, we provide a brief overview of current research in the field of silicon spin-based transistors operating at room temperature. This field has branched into two distinct efforts: the first aimed at developing new types of silicon transistors where spin transport, in conjunction with charge transport, is utilized to realize or augment device operation, and the second focused on improving the performance and functionality of complementary metal oxide silicon devices. In this work, we provide a synopsis of these ideas and conclude with a short term prognosis.

Keywords

Schottky Barrier Magnetization Reversal Drain Current Magnetic Layer Schottky Barrier Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank C.L. Dennis for Figs. 59, S. Sugahara and M. Tanaka for Figs. 1016, and Junjun Wan for Fig. 3. S. Bandyopadhyay acknowledges support from the Air Force Office of Scientific Research grant FA9550-04-1-0261.

References

  1. 1.
    D.D. Awschalom, M.E. Flatte, and N. Samarth, Scientific Am., 286(6), 66 (2002).CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf and D.M. Treger, Proc. IEEE, 91, 647 (2003).CrossRefGoogle Scholar
  3. 3.
    P.P. Freitas, F. Silva, N.J. Oliveira, L.V. Melo, L. Costa, and N. Almeida, Sensors Actuators A, 81, 2 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990).CrossRefGoogle Scholar
  5. 5.
    J. Schliemann, J.C. Egues, and D. Loss, Phys. Rev. Lett., 90, 146801 (2003); X. Cartoixa, Z.Y. Ting, and Y.C. Chang, Appl. Phys. Lett., 83, 1462 (2003); K.C. Hall, K. Gundogdu, J.L. Hicks, A.N. Kocbay, M.E. Flatte, T.F. Boggess, K. Holabird, A. Hunter, D.H. Chow, and J.J. Zink, Appl. Phys. Lett., 86, 202114 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Bandyopadhyay and M. Cahay, Appl. Phys. Lett., 85, 1433 (2004).CrossRefGoogle Scholar
  7. 7.
    J. Fabian, I Zutic, and S. Das Sarma, Appl. Phys. Lett., 84, 85 (2004).CrossRefGoogle Scholar
  8. 8.
    M.E. Flatte and G. Vignale, Appl. Phys. Lett., 78, 1273 (2001); M.E. Flatte, Z.G. Yu, E. Johnston-Halperin, and D.D. Awschalom, Appl. Phys. Lett., 82, 4740 (2003); M.E. Flatte and G. Vignale, J. Appl. Phys., 97, 104508 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Bandyopadhyay and M. Cahay, Appl. Phys. Lett., 86, 133502 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Johnson, Science, 260, 320 (1993).CrossRefGoogle Scholar
  11. 11.
    M. Johnson, IEEE Spectrum, 31(5), 47 (1994).CrossRefGoogle Scholar
  12. 12.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett., 61, 2472 (1988).CrossRefGoogle Scholar
  13. 13.
    G. Binasch, P. Grenberg, F. Saurenbach, and W. Zinn, Phys. Rev. B, 39, 4828 (1989).CrossRefGoogle Scholar
  14. 14.
    A detailed review of the work on giant magnetoresistance using magnetic multilayers is given by M.A.M Gijs and G.E.W. Bauer, Adv. Phys., 46, 285 (1997).CrossRefGoogle Scholar
  15. 15.
    N.F. Mott, Proc. R. Soc., 153, 699 (1936).CrossRefGoogle Scholar
  16. 16.
    A. Fert and I.A. Campbell, Phys. Rev. Lett., 21, 1190 (1968).CrossRefGoogle Scholar
  17. 17.
    A. Fert and I.A. Campbell, J. Phys. F: Metal. Phys., 6, 849 (1975).CrossRefGoogle Scholar
  18. 18.
    W.P. Pratt, Jr., S.-F. Lee, J.M. Slaughter, R. Loloee, P.A. Schroeder, and J. Bass, Phys. Rev. Lett., 66, 3060 (1991).CrossRefGoogle Scholar
  19. 19.
    M.A.M. Gijs, S.K.J. Lenczowski, and J.B. Giesbers, Phys. Rev. Lett., 70, 3343 (1993).CrossRefGoogle Scholar
  20. 20.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 351 (2004).CrossRefGoogle Scholar
  21. 21.
    M. Johnson, J. Appl. Phys., 75, 6714 (1994).CrossRefGoogle Scholar
  22. 22.
    D.J. Monsma, J.C. Lodder, Th.J.A. Popma, and B. Dieny, Phys. Rev. Lett., 74, 5260 (1995).CrossRefGoogle Scholar
  23. 23.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, NY, 1969), Chapter 11.Google Scholar
  24. 24.
    K. Mizushima, T. Kinno, T. Yamauchi, and K. Tanaka, IEEE Trans. Magn., 33, 3500 (1997).CrossRefGoogle Scholar
  25. 25.
    P. Leminh, H. Gokcan, J.C. Lodder, and R. Jansen, J. Appl. Phys., 98, 076111 (2005).CrossRefGoogle Scholar
  26. 26.
    For a recent review of the basic science and technology of the spin-valve transistor, see R. Jansen, J. Phys. D: Appl. Phys., 36, R289 (2003).CrossRefGoogle Scholar
  27. 27.
    R. Jansen, H. Gokcan, O.M.J. van't Erve, F.M. Postma, and J.C. Lodder, J. Appl. Phys., 95, 6927 (2004).CrossRefGoogle Scholar
  28. 28.
    G. Salis, R. Wang, X. Jiang, R.M. Shelby, S.S.P. Parkin, S.R. Bank, and J.S. Harris, Appl. Phys. Lett., 87, 262503 (2005).CrossRefGoogle Scholar
  29. 29.
    J.F. Gregg and P.D. Sparks, US Patent # 6218718 (2001).Google Scholar
  30. 30.
    C.A. Mead, Proc. IRE, 48, 359 (1960); H. Kisaki, Proc. IEEE, 61, 1053 (1973).Google Scholar
  31. 31.
    C.L. Dennis, C. Siristhatikul, G.J. Ensell, J.F. Gregg, and S.M. Thompson, J. Phys. D: Appl. Phys., 36, 81 (2003).CrossRefGoogle Scholar
  32. 32.
    As described in 29, a wide variety of spin diffusion transistor designs are possible based on p—n junctions, Schottky barriers, or spin tunnel junctions.Google Scholar
  33. 33.
    C.L. Dennis, PhD Thesis, The University of Oxford (2004).Google Scholar
  34. 34.
    C.L. Dennis, C.V Tiusan, J.F. Gregg, G.J. Ensell, and S.M. Thompson, IEE Proc.-Circuits Dev. Syst., 152, 340 (2005).CrossRefGoogle Scholar
  35. 35.
    S. Sugahara and M. Tanaka, Appl. Phys. Lett., 84, 2307 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Sugahara and M. Tanaka, J. Appl. Phys., 97, 10D503 (2005).CrossRefGoogle Scholar
  37. 37.
    S. Sugahara, IEE Proc.-Circuits Dev. Syst., 152, 355 (2005).CrossRefGoogle Scholar
  38. 38.
    L.Chang, Y. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, and T. King, Proc. IEEE, 91, 1860 (2003).CrossRefGoogle Scholar
  39. 39.
    G.K. Celler and S. Cristoloveanu, J. Appl. Phys., 93, 4955 (2003).CrossRefGoogle Scholar
  40. 40.
    A. Stroppa, S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B, 68, 155203 (2003).CrossRefGoogle Scholar
  41. 41.
    Y.D. Park et al., Science, 295, 651 (2002).CrossRefGoogle Scholar
  42. 42.
    F. Tsui, L. He, L. Ma, A. Tkachuk, K. Nakajima, and T. Chikyow, Phys. Rev. Lett., 91, 177203 (2003).CrossRefGoogle Scholar
  43. 43.
    X. Han, M. Oogane, H. Kubota, Y. Ando, and T. Miyazaka, Appl. Phys. Lett., 77, 283 (2004).CrossRefGoogle Scholar
  44. 44.
    D. Wang, C. Nordman, J.M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn., 40, 2269 (2004).CrossRefGoogle Scholar
  45. 45.
    A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schonherr, H. Kostial, and K.H. Ploog, Appl. Phys. Lett., 85, 3492 (2004).CrossRefGoogle Scholar
  46. 46.
    F.J. Albert, J.A. Katine, R.A. Buhrman, and D.C. Ralph, Appl. Phys. Lett., 77, 3809 (2000); D. Chiba, Y. Sato, T. Kita, F. Matsukura, and H. Ohno, Phys. Rev. Lett., 93, 216602 (2004).CrossRefGoogle Scholar
  47. 47.
    D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science, 301, 943 (2003).CrossRefGoogle Scholar
  48. 48.
    T. Lepselter and S.M. Sze, Proc. IEEE, 56, 1400 (1968).CrossRefGoogle Scholar
  49. 49.
    R. Tsu and L. Esaki, Appl. Phys. Lett., 22, 562 (1973).CrossRefGoogle Scholar
  50. 50.
    S.A. Wolf, A.Y. Chtchelkanova, and D.M. Treger, IBM J. Res. Dev., 50, 101–116 (2006).CrossRefGoogle Scholar
  51. 51.
    C. Reig, D. Ramirez, H.H. Li, and P.P. Freitas, IEE Proc.-Circuits Dev. Syst., 152, 307 (2005).CrossRefGoogle Scholar
  52. 52.
    S. Bandyopadhyay and M. Cahay, Phys. E, 27, 98 (2005).CrossRefGoogle Scholar
  53. 53.
    J. Wang, H. Meng, and J.P. Wang, J. Appl. Phys., 97, 100509 (2005).Google Scholar
  54. 54.
    P.P. Freitas, L. Costa, N. Almeida, L.V. Melo, F. Silva, J. Bernardo, and C. Santos, J. Appl. Phys., 85, 5459 (1999).CrossRefGoogle Scholar
  55. 55.
    W.J. Ku, P.P. Freitas, P. Compadrinho, and J. Barata, IEEE Trans. Magn., 36, 2782 (2000).CrossRefGoogle Scholar
  56. 56.
    J. Pelegri, J.B. Egea, D. Ramirez, and P.P. Freitas, Sensors Actuators A, 105, 132 (2003).CrossRefGoogle Scholar
  57. 57.
    L. Lagae, R. Wirix-Speetjens, C.-X. Liu, W. Laureyn, G. Borghs, S. Harvey, P. Galvin, H.A. Ferreira, D.L. Graham, P.P. Freitas, L.A. Clarke, and M.D. Amaral, IEE Proc.-Circuits Dev. Syst., 152, 393 (2005).CrossRefGoogle Scholar
  58. 58.
    S. Sanvito, Nature Materials, 6, 803 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Cahay
    • 1
  • S. Bandyopadhyay
    • 1
  1. 1.ECECS DepartmentUniversitfy of CincinnatiCincinnatiUSA

Personalised recommendations