Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this review article, we provide a brief overview of current research in the field of silicon spin-based transistors operating at room temperature. This field has branched into two distinct efforts: the first aimed at developing new types of silicon transistors where spin transport, in conjunction with charge transport, is utilized to realize or augment device operation, and the second focused on improving the performance and functionality of complementary metal oxide silicon devices. In this work, we provide a synopsis of these ideas and conclude with a short term prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Awschalom, M.E. Flatte, and N. Samarth, Scientific Am., 286(6), 66 (2002).

    Article  Google Scholar 

  2. S.A. Wolf and D.M. Treger, Proc. IEEE, 91, 647 (2003).

    Article  Google Scholar 

  3. P.P. Freitas, F. Silva, N.J. Oliveira, L.V. Melo, L. Costa, and N. Almeida, Sensors Actuators A, 81, 2 (2000).

    Article  Google Scholar 

  4. S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990).

    Article  CAS  Google Scholar 

  5. J. Schliemann, J.C. Egues, and D. Loss, Phys. Rev. Lett., 90, 146801 (2003); X. Cartoixa, Z.Y. Ting, and Y.C. Chang, Appl. Phys. Lett., 83, 1462 (2003); K.C. Hall, K. Gundogdu, J.L. Hicks, A.N. Kocbay, M.E. Flatte, T.F. Boggess, K. Holabird, A. Hunter, D.H. Chow, and J.J. Zink, Appl. Phys. Lett., 86, 202114 (2005).

    Article  CAS  Google Scholar 

  6. S. Bandyopadhyay and M. Cahay, Appl. Phys. Lett., 85, 1433 (2004).

    Article  CAS  Google Scholar 

  7. J. Fabian, I Zutic, and S. Das Sarma, Appl. Phys. Lett., 84, 85 (2004).

    Article  CAS  Google Scholar 

  8. M.E. Flatte and G. Vignale, Appl. Phys. Lett., 78, 1273 (2001); M.E. Flatte, Z.G. Yu, E. Johnston-Halperin, and D.D. Awschalom, Appl. Phys. Lett., 82, 4740 (2003); M.E. Flatte and G. Vignale, J. Appl. Phys., 97, 104508 (2005).

    Article  CAS  Google Scholar 

  9. S. Bandyopadhyay and M. Cahay, Appl. Phys. Lett., 86, 133502 (2005).

    Article  CAS  Google Scholar 

  10. M. Johnson, Science, 260, 320 (1993).

    Article  CAS  Google Scholar 

  11. M. Johnson, IEEE Spectrum, 31(5), 47 (1994).

    Article  Google Scholar 

  12. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett., 61, 2472 (1988).

    Article  CAS  Google Scholar 

  13. G. Binasch, P. Grenberg, F. Saurenbach, and W. Zinn, Phys. Rev. B, 39, 4828 (1989).

    Article  CAS  Google Scholar 

  14. A detailed review of the work on giant magnetoresistance using magnetic multilayers is given by M.A.M Gijs and G.E.W. Bauer, Adv. Phys., 46, 285 (1997).

    Article  CAS  Google Scholar 

  15. N.F. Mott, Proc. R. Soc., 153, 699 (1936).

    Article  CAS  Google Scholar 

  16. A. Fert and I.A. Campbell, Phys. Rev. Lett., 21, 1190 (1968).

    Article  CAS  Google Scholar 

  17. A. Fert and I.A. Campbell, J. Phys. F: Metal. Phys., 6, 849 (1975).

    Article  Google Scholar 

  18. W.P. Pratt, Jr., S.-F. Lee, J.M. Slaughter, R. Loloee, P.A. Schroeder, and J. Bass, Phys. Rev. Lett., 66, 3060 (1991).

    Article  CAS  Google Scholar 

  19. M.A.M. Gijs, S.K.J. Lenczowski, and J.B. Giesbers, Phys. Rev. Lett., 70, 3343 (1993).

    Article  CAS  Google Scholar 

  20. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 351 (2004).

    Article  CAS  Google Scholar 

  21. M. Johnson, J. Appl. Phys., 75, 6714 (1994).

    Article  Google Scholar 

  22. D.J. Monsma, J.C. Lodder, Th.J.A. Popma, and B. Dieny, Phys. Rev. Lett., 74, 5260 (1995).

    Article  CAS  Google Scholar 

  23. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, NY, 1969), Chapter 11.

    Google Scholar 

  24. K. Mizushima, T. Kinno, T. Yamauchi, and K. Tanaka, IEEE Trans. Magn., 33, 3500 (1997).

    Article  CAS  Google Scholar 

  25. P. Leminh, H. Gokcan, J.C. Lodder, and R. Jansen, J. Appl. Phys., 98, 076111 (2005).

    Article  CAS  Google Scholar 

  26. For a recent review of the basic science and technology of the spin-valve transistor, see R. Jansen, J. Phys. D: Appl. Phys., 36, R289 (2003).

    Article  CAS  Google Scholar 

  27. R. Jansen, H. Gokcan, O.M.J. van't Erve, F.M. Postma, and J.C. Lodder, J. Appl. Phys., 95, 6927 (2004).

    Article  CAS  Google Scholar 

  28. G. Salis, R. Wang, X. Jiang, R.M. Shelby, S.S.P. Parkin, S.R. Bank, and J.S. Harris, Appl. Phys. Lett., 87, 262503 (2005).

    Article  CAS  Google Scholar 

  29. J.F. Gregg and P.D. Sparks, US Patent # 6218718 (2001).

    Google Scholar 

  30. C.A. Mead, Proc. IRE, 48, 359 (1960); H. Kisaki, Proc. IEEE, 61, 1053 (1973).

    Google Scholar 

  31. C.L. Dennis, C. Siristhatikul, G.J. Ensell, J.F. Gregg, and S.M. Thompson, J. Phys. D: Appl. Phys., 36, 81 (2003).

    Article  CAS  Google Scholar 

  32. As described in 29, a wide variety of spin diffusion transistor designs are possible based on p—n junctions, Schottky barriers, or spin tunnel junctions.

    Google Scholar 

  33. C.L. Dennis, PhD Thesis, The University of Oxford (2004).

    Google Scholar 

  34. C.L. Dennis, C.V Tiusan, J.F. Gregg, G.J. Ensell, and S.M. Thompson, IEE Proc.-Circuits Dev. Syst., 152, 340 (2005).

    Article  Google Scholar 

  35. S. Sugahara and M. Tanaka, Appl. Phys. Lett., 84, 2307 (2004).

    Article  CAS  Google Scholar 

  36. S. Sugahara and M. Tanaka, J. Appl. Phys., 97, 10D503 (2005).

    Article  CAS  Google Scholar 

  37. S. Sugahara, IEE Proc.-Circuits Dev. Syst., 152, 355 (2005).

    Article  Google Scholar 

  38. L.Chang, Y. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, and T. King, Proc. IEEE, 91, 1860 (2003).

    Article  CAS  Google Scholar 

  39. G.K. Celler and S. Cristoloveanu, J. Appl. Phys., 93, 4955 (2003).

    Article  CAS  Google Scholar 

  40. A. Stroppa, S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B, 68, 155203 (2003).

    Article  CAS  Google Scholar 

  41. Y.D. Park et al., Science, 295, 651 (2002).

    Article  CAS  Google Scholar 

  42. F. Tsui, L. He, L. Ma, A. Tkachuk, K. Nakajima, and T. Chikyow, Phys. Rev. Lett., 91, 177203 (2003).

    Article  CAS  Google Scholar 

  43. X. Han, M. Oogane, H. Kubota, Y. Ando, and T. Miyazaka, Appl. Phys. Lett., 77, 283 (2004).

    Article  CAS  Google Scholar 

  44. D. Wang, C. Nordman, J.M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn., 40, 2269 (2004).

    Article  CAS  Google Scholar 

  45. A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schonherr, H. Kostial, and K.H. Ploog, Appl. Phys. Lett., 85, 3492 (2004).

    Article  CAS  Google Scholar 

  46. F.J. Albert, J.A. Katine, R.A. Buhrman, and D.C. Ralph, Appl. Phys. Lett., 77, 3809 (2000); D. Chiba, Y. Sato, T. Kita, F. Matsukura, and H. Ohno, Phys. Rev. Lett., 93, 216602 (2004).

    Article  CAS  Google Scholar 

  47. D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science, 301, 943 (2003).

    Article  CAS  Google Scholar 

  48. T. Lepselter and S.M. Sze, Proc. IEEE, 56, 1400 (1968).

    Article  Google Scholar 

  49. R. Tsu and L. Esaki, Appl. Phys. Lett., 22, 562 (1973).

    Article  CAS  Google Scholar 

  50. S.A. Wolf, A.Y. Chtchelkanova, and D.M. Treger, IBM J. Res. Dev., 50, 101–116 (2006).

    Article  CAS  Google Scholar 

  51. C. Reig, D. Ramirez, H.H. Li, and P.P. Freitas, IEE Proc.-Circuits Dev. Syst., 152, 307 (2005).

    Article  Google Scholar 

  52. S. Bandyopadhyay and M. Cahay, Phys. E, 27, 98 (2005).

    Article  Google Scholar 

  53. J. Wang, H. Meng, and J.P. Wang, J. Appl. Phys., 97, 100509 (2005).

    Google Scholar 

  54. P.P. Freitas, L. Costa, N. Almeida, L.V. Melo, F. Silva, J. Bernardo, and C. Santos, J. Appl. Phys., 85, 5459 (1999).

    Article  CAS  Google Scholar 

  55. W.J. Ku, P.P. Freitas, P. Compadrinho, and J. Barata, IEEE Trans. Magn., 36, 2782 (2000).

    Article  Google Scholar 

  56. J. Pelegri, J.B. Egea, D. Ramirez, and P.P. Freitas, Sensors Actuators A, 105, 132 (2003).

    Article  CAS  Google Scholar 

  57. L. Lagae, R. Wirix-Speetjens, C.-X. Liu, W. Laureyn, G. Borghs, S. Harvey, P. Galvin, H.A. Ferreira, D.L. Graham, P.P. Freitas, L.A. Clarke, and M.D. Amaral, IEE Proc.-Circuits Dev. Syst., 152, 393 (2005).

    Article  Google Scholar 

  58. S. Sanvito, Nature Materials, 6, 803 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank C.L. Dennis for Figs. 59, S. Sugahara and M. Tanaka for Figs. 1016, and Junjun Wan for Fig. 3. S. Bandyopadhyay acknowledges support from the Air Force Office of Scientific Research grant FA9550-04-1-0261.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cahay, M., Bandyopadhyay, S. (2009). Room Temperature Silicon Spin-Based Transistors. In: Koshida, N. (eds) Device Applications of Silicon Nanocrystals and Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78689-6_6

Download citation

Publish with us

Policies and ethics