Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser

  • Lorenzo Pavesi
Part of the Nanostructure Science and Technology book series (NST)


In this chapter, I review the various approaches to achieve an injection laser by using low dimensional or nanostructured silicon. After an initial discussion of the basic on light amplification and gain in semiconductor, I consider the limitations of silicon, in particular its band structure. Then, I present the experimental data about the observation of optical gain in silicon nanocrystals, in Er3+ ions coupled to silicon nanocrystals, in nanopatterned silicon on insulator and in nano-porous silicon impregnated by dyes. Finally I draw some conclusions on the perspectives to build a nano-silicon laser.


Radiative Lifetime Auger Recombination Internal Quantum Efficiency Optical Gain Light Emit Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank the hard work of my coworkers and students. The support of EC through the SEMINANO (FP6-505285), PHOLOGIC (FP6-017158), and SINERGIA (FP5-29650)/LANCER (FP6-033574) projects and of the MIUR through the Italy-Spain linkage grant is acknowledged


  1. 1.
    Optical interconnects, edited by L. Pavesi and G. Guillot, Springer series in Optical sciences Vol. 119 (Springer-Verlag, Berlin 2006).Google Scholar
  2. 2.
    Silicon Photonics, edited by Lorenzo Pavesi and David Lockwood, Topics in Applied Physics Vol. 94 (Springer-Verlag, Berlin 2004).Google Scholar
  3. 3.
    Ossicini Stefano, Pavesi Lorenzo, Priolo Francesco Light Emitting Silicon for Microphotonics, Springer Tracts in Modern Physics, Vol. 194 (Springer-Verlag, Berlin 2003)Google Scholar
  4. 4.
    M. A. Green, J. Zhao, A. Wang, P. J. Reece and M. Gal, Nature 412, 805 (2001)CrossRefGoogle Scholar
  5. 5.
    W.L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001)CrossRefGoogle Scholar
  6. 6.
    M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, Appl. Phys. Lett. 84, 2163 (2004)CrossRefGoogle Scholar
  7. 7.
    O. Boyraz and B. Jalali, Opt. Exp. 12, 5269 (2004); Opt. Exp. 11, 1731 (2003) 59; Opt. Exp. 13, 796 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, Opt. Exp. 12, 4261 (2004); Nature 433, 292 (2005); Nature 433, 625 (2005)CrossRefGoogle Scholar
  9. 9.
    L. Pavesi, Materials Today 8(1) (January 2005) pp. 18–25.CrossRefGoogle Scholar
  10. 10.
    O. Svelto, D. C. Hanna, Principles of Lasers, Plenum Press, 1998.Google Scholar
  11. 11.
    M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006)CrossRefGoogle Scholar
  12. 12.
    Towards the first silicon laser, edited by L. Pavesi, S. Gaponenko and L. Dal Negro, NATO Science Series (Kluwer Academic Publishers 2003)Google Scholar
  13. 13.
    P. Jonsson, H. Bleichner, M. Isberg, and E. Nordlander, J. Appl. Phys. 81, 2256 (1997)CrossRefGoogle Scholar
  14. 14.
    Schroder, D. K., R. N. Thomos, and J. C. Swartz, IEEE Trans. Electron. Dev. ED-25, 254 (1978)Google Scholar
  15. 15.
    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, Nature 408, 440 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, Appl. Phys. Lett. 80, 661 (2002)CrossRefGoogle Scholar
  17. 17.
    J. Valenta, R. Juhasz, and J. Linnros, Appl. Phys. Lett. 80, 1070 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Zimina, S. Eisebitt, W. Eberhardt, J. Heitmann and M. Zacharias, Appl. Phys. Lett. 88, 163103 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Daldosso, M. Luppi, S. Ossicini, E. Degoli, R. Magri, G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, L. Pavesi, S. Boninelli, F. Priolo, C. Bongiorno, and F. Iacona, Phys. Rev. B 68, 085327 (2003)CrossRefGoogle Scholar
  20. 20.
    Johannes Heitmann, Frank Muller, Lixin Yi, Margit Zacharias, Dmitri Kovalev, Frank Eichhorn, Phys. Rev. B 69, 195309 (2004)CrossRefGoogle Scholar
  21. 21.
    L. Khriachtchev, M. Räsänen, S. Novikov, O. Kilpelä, and J. Sinkkonen, J. Appl. Phys. 86, 5601 (1999)CrossRefGoogle Scholar
  22. 22.
    Leonid Khriachtchev, Markku Räsänen, Sergei Novikov, Lorenzo Pavesi, Appl. Phys. Lett. 85, 1511 (2004)CrossRefGoogle Scholar
  23. 23.
    Y. J. Chabal, Krishnan Raghavachari, X. Zhang, and E. Garfunkel Phys. Rev. B 66, 161315 (2002)CrossRefGoogle Scholar
  24. 24.
    J. S. Biteen, N. S. Lewis, and H. A. Atwater A. Polman, Appl. Phys. Lett. 84, 5389 (2004)CrossRefGoogle Scholar
  25. 25.
    L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburro, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò and F. Icona, Physica E 16, 297 (2003)CrossRefGoogle Scholar
  26. 26.
    L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo and F. Iacona, Appl. Phys. Lett. 82, 4636 (2003)CrossRefGoogle Scholar
  27. 27.
    L. Dal Negro, M. Cazzanelli, B. Danese, L. Pavesi, F. Iacona, G. Franzò and F. Priolo, J. Appl. Phys. 96, 5467(2004)Google Scholar
  28. 28.
    Leonid Khriachtchev, Markku Rasanen, Sergei Novikov, and Juha Sinkkonen, Appl. Phys. Lett. 79, 1249 (2001)CrossRefGoogle Scholar
  29. 29.
    J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, Appl. Phys. Lett. 83, 5479 (2003)CrossRefGoogle Scholar
  30. 30.
    K. Lutcrova, K. Dohnalova, V. Svrcek, I. Pelant, J.-P. Likforman, O. Cregut, P. Gilliot, and B. Honerlage, Appl. Phys. Lett. 84, 3280 (2004)CrossRefGoogle Scholar
  31. 31.
    M H Nayfeh, S Rao, N Barry, Appl. Phys. Lett. 80, 121 (2002)CrossRefGoogle Scholar
  32. 32.
    Massimo Cazzanclli, Dmitri Kovalev, Luca Dal Negro, Zeno Gaburro, and Lorenzo Pavesi, Phys. Rev. Lett. 93, 207402 (2004)CrossRefGoogle Scholar
  33. 33.
    V.I.Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, et al., Science 290, 314, (2000)CrossRefGoogle Scholar
  34. 34.
    C. Delerue, M. Lannoo, G. Allan, Phys. Rev. Lett. 75, 2228 (1995)CrossRefGoogle Scholar
  35. 35.
    F. Zhou and J. D. Head, J. Phys. Chem. B 104, 981 (2000); A. B. Filonov, S. Ossicini, F. Bassani, F. Arnaud D'Avitaya, Phys. Rev. B 65, 195317 (2002)CrossRefGoogle Scholar
  36. 36.
    R.G. Elliman, M.J. Lederer, N. Smith, and B. Luther-Davies, Nucl. Instrum. Meth. B 206, 427 (2003)CrossRefGoogle Scholar
  37. 37.
    A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, Phys. Rev. B 62, 12625 (2000)CrossRefGoogle Scholar
  38. 38.
    S. L. Jaiswal et al., Appl. Phys. A77, 57 (2003).Google Scholar
  39. 39.
    G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, Appl. Phys. A 74, 1 (2002)CrossRefGoogle Scholar
  40. 40.
    R. J. Walters, R. I. Bourianof, H. Atwater, Nat. Mat. 4, 143 (2005)CrossRefGoogle Scholar
  41. 41.
    A.J. Kenyon, P.F. Trwoga, M. Federighi, and C.W. Pitt, J. Phys. Condens. Mat. 6, L319 (1994)CrossRefGoogle Scholar
  42. 42.
    M. Melchiorri, N. Daldosso, D. Navarro-Urrios, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, C. Dufour, Appl. Phys. Lett. (2006)Google Scholar
  43. 43.
    P. Pellegrino, B. Garrido, C. Garcia, J. Arbiol, J.R. Morante, M. Melchiorri, N. Daldosso, L. Pavesi, E. Schedi, and G. Sarrabayrouse, J. Appl. Phys. 97, 074312 (2005)CrossRefGoogle Scholar
  44. 44.
    E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).Google Scholar
  45. 45.
    G. Franzò, S. Coffa, F. Priolo, and C. Spinella, J. Appl. Phys. 81, 2784 (1997)CrossRefGoogle Scholar
  46. 46.
    F. Priolo, G. Franzò, S. Coffa, and A. Carnera, Phys. Rev. B 57, 4443 (1998)CrossRefGoogle Scholar
  47. 47.
    M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 71, 1198 (1997)CrossRefGoogle Scholar
  48. 48.
    D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, Phys. Rev. B.67,245301 (2003)CrossRefGoogle Scholar
  49. 49.
    G. Franzò et al., Appl. Phys. Lett. 82,3871(2003)CrossRefGoogle Scholar
  50. 50.
    D. Kuritsyn, A. Kozanecki, and H. Przybylin'ska, W. Jantsch, Appl. Phys. Lett. 83, 4160 (2003)CrossRefGoogle Scholar
  51. 51.
    P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, Appl. Phys. Lett. 88, 121915 (2006)CrossRefGoogle Scholar
  52. 52.
    F. Gourbilleau, R. Madilon, C. Dufour, and R. Rizk, Opt. Mat. 27, 868 (2005)CrossRefGoogle Scholar
  53. 53.
    N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, Appl. Phys. Lett. 88, 161901 (2006)CrossRefGoogle Scholar
  54. 54.
    M. Wojdak et al. Phys. Rev. B 69, 233315 (2004)CrossRefGoogle Scholar
  55. 55.
    N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gorbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido, and L. Cognolato, Appl. Phys. Lett. 86, 231103 (2005)CrossRefGoogle Scholar
  56. 56.
    W. Loh and A. J. Kenyon, IEEE Phot. Techn. Lett.18, 289 (2006)CrossRefGoogle Scholar
  57. 57.
    F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera, J. Appl. Phys. 89, 264 (2001)CrossRefGoogle Scholar
  58. 58.
    A. J. Kenyon, C. E. Chryssou, C. W. Pitt, T. Shimizu-Iwayama, D. E. Hole, N. Sharma, and C. J. Humphreys J. Appl. Phys. 91, 367 (2002)CrossRefGoogle Scholar
  59. 59.
    F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzó, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 3242 (2002)CrossRefGoogle Scholar
  60. 60.
    J. Lee, J. Shin, N. Park, IEEE J. Lightwave Technol. 23, 19 (2005)CrossRefGoogle Scholar
  61. 61.
    Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, Appl. Phys. Lett. 81, 3720 (2002)CrossRefGoogle Scholar
  62. 62.
    P. G. Kik and A. Polman, J. Appl. Phys. 91, 534 (2002)CrossRefGoogle Scholar
  63. 63.
    H. Lee, J. H. Shin, and N. Park, Opt. Exp. 13, 9881 (2005)CrossRefGoogle Scholar
  64. 64.
    Maria Eloisa Castagna., Salvatore Coffa, Mariantonietta Monaco, Anna Muscara, Liliana Caristia, Simona Lorenti, Alberto Messina, Materials Science and Engineering B105, 83 (2003).CrossRefGoogle Scholar
  65. 65.
    F. Iacona, G. Franzò, E.C. Moreira, and F. Priolo: J. Appl. Phys. 89, 8354 (2001)CrossRefGoogle Scholar
  66. 66.
    C. A. Barrios and M. Lipson, Opt. Exp. 13, 10092 (2005)CrossRefGoogle Scholar
  67. 67.
    A. Polman, B. Min, J. Kalkman. T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004)CrossRefGoogle Scholar
  68. 68.
    S. G. Cloutier, P. A. Kossyrev, and J. Xu, Nature Materials 4, 887 (2005)CrossRefGoogle Scholar
  69. 69.
    C.J. Oton, D. Navarro-Urrios, M. Ghulinyan, N. E. Capuj, S. Gonzales-Peres, F. Lahoz, I. R. Martin, and L. Pavesi, Appl. Phys. Lett. (2006)Google Scholar
  70. 70.
    H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, Optics Exp. 13, 9460 (2005); A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, IEEE Photon. Technol. Lett. (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lorenzo Pavesi
    • 1
  1. 1.Laboratorio NanoscienceDipartimento di Fisica, Universita di TrentoTrentoItaly

Personalised recommendations