Advertisement

Surface and Superlattice

  • Rabah Boukherroub
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This book chapter deals with the preparation of Si/SiO2 superlattices (SLs). It is organized in several parts dealing with the progress made in Si/SiO2 SL research with a special focus on the (1) methods developed for Si-based superlattices deposition and different parameters affecting the structural and optical properties of Si/SiO2 SLs, (2) techniques used for structural characterization of the SLs from both theoretical and experimental aspects, (3) optical properties (photoluminescence, PL and electroluminescence, EL) of the SLs, (4) examples of other Si-based SL structures, and (5) perspectives.

Keywords

Thermal Annealing Rapid Thermal Annealing Silicon Layer Silicon Nanocrystals Excimer Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is grateful for the permissions from Elsevier and AIP for providing useful material in this chapter. The Centre National de la Recherche Scientifique (CNRS) and the Nord-Pas-de Calais region are gratefully acknowledged for financial support.

References

  1. 1.
    S. Furukawa and T. Miyasato, Jpn. J. Appl. Phys. Part 2 27, L2207 (1988).Google Scholar
  2. 2.
    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
  3. 3.
    V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).Google Scholar
  4. 4.
    A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).Google Scholar
  5. 5.
    J. Heitmann, F. Müller, M. Zacharias, et al., Adv. Mater. 17, 795 (2005).Google Scholar
  6. 6.
    Y. Peng, X. Zhao, and G. Fu, Chin. Sci. Bull. 47, 1233 (2002).Google Scholar
  7. 7.
    B. Abeles and T. Tiedje, Phys. Rev. Lett. 51, 2003 (1983).Google Scholar
  8. 8.
    T. Zheng and Z. Li, Superlattices Microstruct. 37, 227 (2005).Google Scholar
  9. 9.
    D. J. Lockwood, Phase Trans. 68, 151 (1999).Google Scholar
  10. 10.
    Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, Nature 378, 258 (1995).Google Scholar
  11. 11.
    D. J. Lockwood, Z. H. Lu, and J.-M. Baribeau, Phys. Rev. Lett. 76, 539 (1996).Google Scholar
  12. 12.
    Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, Solid State Electron. 40, 197 (1996).Google Scholar
  13. 13.
    D. J. Lockwood, J.-M. Baribeau, M. Noël, et al., Mater. Res. Soc. Symp. Proc. 715, 49 (2002).Google Scholar
  14. 14.
    D. J. Lockwood, J.-M. Baribeau, M. Noël, et al., Solid State Commun. 122, 271 (2002).Google Scholar
  15. 15.
    S. V. Novikov, J. Sinkkonen, O. Kilpelä, et al., J. Cryst. Growth 175/176, 514 (1997).Google Scholar
  16. 16.
    S. V. Novikov, J. Sinkkonen, O. Kilpelä, et al., J. Vac. Sci. Technol. B 15, 1471 (1997).Google Scholar
  17. 17.
    J. Keränen, T. Lepistö, L. Ryen, et al., J. Appl. Phys. 84, 6827 (1998).Google Scholar
  18. 18.
    L. Khriachtchev, M. Rasanen, S. Novikov, et al., J. Appl. Phys. 86, 5601 (1999).Google Scholar
  19. 19.
    L. Khriachtchev, S. Novikov, and O. Kilpela, J. Appl. Phys. 87, 7805 (2000).Google Scholar
  20. 20.
    L. Khriachtchev, O. Kilpelä, S. Karirinne, et al., Appl. Phys. Lett. 78, 323 (2001).Google Scholar
  21. 21.
    L. Khriachtchev, S. Novikov, and J. Lahtinen, J. Appl. Phys. 92, 5856 (2002).Google Scholar
  22. 22.
    L. Khriachtchev, S. Novikov, J. Lahtinen, et al., J. Phys.: Condens. Matter 16, 3219 (2004).Google Scholar
  23. 23.
    L. Khriachtchev, M. Räsänen, and S. Novikov, Appl. Phys. Lett. 88, 013102 (2006).Google Scholar
  24. 24.
    K. Dovidenko, J. C. Lofgren, F. de Freitas, et al., Phys. E 16, 509–516 (2003).Google Scholar
  25. 25.
    R. Tsu, A. Filios, C. Lofgren, et al., Electrochem. Solid-State Lett. 1, 80 (1998).Google Scholar
  26. 26.
    R. Tsu and J. C. Lofgren, J. Cryst. Growth 227–228, 21 (2001).Google Scholar
  27. 27.
    Q. Zhang, A. Filios, J. C. Lofgren, et al., Phys. E 8, 365 (2000).Google Scholar
  28. 28.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, et al., Phys. Status Solidi (a) 165, 69 (1998).Google Scholar
  29. 29.
    B. T. Sullivan, D. J. Lockwood, H. J. Labbé, et al., Appl. Phys. Lett. 69, 3149 (1996).Google Scholar
  30. 30.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, et al., Appl. Phys. Lett. 72, 43 (1998).Google Scholar
  31. 31.
    M. Zacharias, L. Tsybeskov, K. D. Hirschman, et al., J. Non-Cryst. Solids 227–230, 1132 (1998).Google Scholar
  32. 32.
    D. J. Lockwood, B. T. Sullivan, and H. J. Labbé, J. Lumin. 80, 75 (1999).Google Scholar
  33. 33.
    L. Tsybeskov, G. F. Grom, M. Jungo, et al., Mater. Sci. Eng. B 69–70, 303 (2000).Google Scholar
  34. 34.
    G. F. Grom, D. J. Lockwood, J. P. McCaffrey, et al., Nature 407, 358 (2000).Google Scholar
  35. 35.
    S. Zollner, A. Konkar, R. Liu, et al., Mater. Res. Soc. Symp. Proc. 638, F5.1.1. (2001).Google Scholar
  36. 36.
    J. Ruan, P. M. Fauchet, L. Dal Negro, et al., Appl. Phys. Lett. 83, 5479 (2003).Google Scholar
  37. 37.
    N.-N. Liu, J.-M. Sun, S.-H. Pan, et al., Opt. Commun. 176, 239 (2000).Google Scholar
  38. 38.
    M. Benyoucef, M. Kuball, J. M. Sun, et al., J. Appl. Phys. 89, 7903 (2001).Google Scholar
  39. 39.
    G. G. Qin, S. Y. Ma, Z. C. Ma, et al., Solid State Commun. 106, 329 (1998).Google Scholar
  40. 40.
    C. L. Heng, B. R. Zhang, Y. P. Qiao, et al., Phys. B 270, 104 (1999).Google Scholar
  41. 41.
    C. L. Heng, Y. Chen, Z. C. Ma, et al., J. Appl. Phys. 89, 5682 (2001).Google Scholar
  42. 42.
    B. Averboukh, R. Huber, K. W. Cheah, et al., J. Appl. Phys. 92, 3564 (2002).Google Scholar
  43. 43.
    S. Y. Ma, G. G. Qin, Y. Y. Wang, et al., Surf. Interface Anal. 32, 98 (2001).Google Scholar
  44. 44.
    F. Gourbilleau, X. Portier, C. Ternon, et al., Appl. Phys. Lett. 78, 3058 (2001).Google Scholar
  45. 45.
    C. Ternon, F. Gourbilleau, X. Portier, et al., Thin Solid Films 419, 5 (2002).Google Scholar
  46. 46.
    K. Nishimoto, D. Sotta, H. A. Durand, et al., J. Lumin. 80, 439 (1999).Google Scholar
  47. 47.
    Y. Kanemitsu, M. Liboshi, and T. Kushida, Appl. Phys. Lett. 76, 2200 (2000).Google Scholar
  48. 48.
    Y. Kanemitsu and T. Kushida, Appl. Phys. Lett. 77, 3550 (2000).Google Scholar
  49. 49.
    S. Nihonyanagi, K. Nishimoto, and Y. Kanemitsu, J. Non-Cryst. Solids 299–302, 1095 (2002).Google Scholar
  50. 50.
    M. Glover and A. Meldrum, Opt. Mater. 27, 977 (2005).Google Scholar
  51. 51.
    O. Jambois, H. Rinnert, X. Devaux, et al., J. Appl. Phys. 98, 046105 (2005).Google Scholar
  52. 52.
    J.-M. Baribeau, D. J. Lockwood, Z. H. Lu, et al., J. Lumin. 80, 417 (1999).Google Scholar
  53. 53.
    F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).Google Scholar
  54. 54.
    V. Vinciguerra, G. Franzo, F. Priolo, et al., J. Appl. Phys. 87, 8165 (2000).Google Scholar
  55. 55.
    V. Ovchinnikov, A. Malinin, V. Sokolov, et al., Opt. Mater. 17, 103 (2001).Google Scholar
  56. 56.
    O. Ovchinnikov, V. Sokolov, and S. Franssila, Microelectron. J. 34, 579 (2003).Google Scholar
  57. 57.
    Z. Ma, L. Wang, K. Chen, et al., J. Non-Cryst. Solids 299–302, 648 (2002).Google Scholar
  58. 58.
    Z. Ma, K. Chen, X. Huang, et al., J. Appl. Phys. 95, 2448 (2004).Google Scholar
  59. 59.
    J. Mei, Y. Rui, Z. Ma, et al., Solid State Commun. 131, 701 (2004).Google Scholar
  60. 60.
    K. Chen, Z. Ma, X. Huang, et al., J. Non-Cryst. Solids 338–340, 448 (2004).Google Scholar
  61. 61.
    Z. Ma, K. Chen, X. Huang, et al., Appl. Phys. Lett. 85, 516 (2004).Google Scholar
  62. 62.
    H. Zou, L. Wu, X. Huang, et al., Thin Solid Films 491, 212 (2005).Google Scholar
  63. 63.
    D. Cha, J. H. Shin, I.-H. Song, et al., Appl. Phys. Lett. 84, 1287 (2004).Google Scholar
  64. 64.
    H. J. Trodahl, M. Forbes, D. G. A. Nelson, et al., J. Appl. Phys. 62, 1274 (1987).Google Scholar
  65. 65.
    U. Kahler and H. Hofmeister, Opt. Mater. 17, 83 (2001).Google Scholar
  66. 66.
    J. Heitmann, R. Scholz, M. Schmidt, et al., J. Non-Cryst. Solids 299–302, 1075 (2002).Google Scholar
  67. 67.
    M. Schmidt, J. Heitmann, R. Scholz, et al., J. Non-Cryst. Solids 299–302, 678 (2002).Google Scholar
  68. 68.
    M. Zacharias, J. Heitmann, R. Scholz, et al., Appl. Phys. Lett. 80, 661 (2002).Google Scholar
  69. 69.
    L. X. Yi, J. Heitmann, R. Scholz, et al., Appl. Phys. Lett. 81, 4248 (2002).Google Scholar
  70. 70.
    L. X. Yi, J. Heitmann, R. Scholz, et al., J. Phys.: Condens. Matter 15, S2887 (2003).Google Scholar
  71. 71.
    A. G. Nassiopoulou, V. Ioannou-Sougleridis, P. Photopoulos, et al., Phys. Status Solidi (a) 165, 79 (1998).Google Scholar
  72. 72.
    P. Photopoulos, A. G. Nassiopoulou, D. N. Kouvatsos, et al., Mater. Sci. Eng. B 69–70, 345 (2000).Google Scholar
  73. 73.
    P. Photopoulos, A. G. Nassiopoulou, D. N. Kouvatsos, et al., Appl. Phys. Lett. 76, 3588 (2000).Google Scholar
  74. 74.
    D. N. Kouvatsos, V. Ioannou-Sougleridis, and A. G. Nassiopoulou, Mater. Sci. Eng. B 101, 270 (2003).Google Scholar
  75. 75.
    Y. Hirano, F. Sato, N. Saito, et al., J. Non-Cryst. Solids 266–269, 1004 (2000).Google Scholar
  76. 76.
    Y. Hirano, F. Sato, S. Aihara, et al., Appl. Phys. Lett. 79, 2255 (2001).Google Scholar
  77. 77.
    S. Sato, N. Yamamoto, H. Yao, et al., Chem. Phys. Lett. 365, 421 (2002).Google Scholar
  78. 78.
    G. Pucker, P. Bellutti, C. Spinella, et al., J. Appl. Phys. 88, 6044 (2000).Google Scholar
  79. 79.
    G. Pucker, P. Bellutti, M. Cazzanelli, et al., Opt. Mater. 17, 27 (2001).Google Scholar
  80. 80.
    M. Patrini, M. Galli, M. Belotti, et al., J. Appl. Phys. 92, 1816 (2002).Google Scholar
  81. 81.
    Z. Gaburro, G. Pucker, P. Bellutti, et al., Solid State Commun. 114, 33 (2000).Google Scholar
  82. 82.
    M. Modreanu, M. Gartner, E. Aperathitis, et al., Phys. E 16, 461 (2003).Google Scholar
  83. 83.
    M. Modreanu, E. Aperathitis, M. Androulidaki, et al., Opt. Mater. 27, 1020 (2005).Google Scholar
  84. 84.
    L. Heikkilä, T. Kuusela, H.-P. Hedman, et al., Appl. Surf. Sci. 133, 84 (1998).Google Scholar
  85. 85.
    L. Heikkilä, T. Kuusela, and H.-P. Hedman, J. Appl. Phys. 89, 2179 (2001).Google Scholar
  86. 86.
    N. Porjo, T. Kuusela, and L. Heikkilä, J. Appl. Phys. 89, 4902 (2001).Google Scholar
  87. 87.
    S. Charvet, R. Madelon, R. Rizk, et al., J. Lumin. 80, 241 (1999).Google Scholar
  88. 88.
    S. Charvet, R. Madelon, F. Gourbilleau, et al., J. Lumin. 80, 257 (1999).Google Scholar
  89. 89.
    F. Gourbilleau, P. Voivenel, X. Portier, et al., Microelectron. Reliab. 40, 889 (2000).Google Scholar
  90. 90.
    C. Ternon, F. Gourbilleau, R. Rizk, et al., Phys. E 16, 517 (2003).Google Scholar
  91. 91.
    M. Bollani, S. Binetti, M. Acciarri, et al., Mater. Res. Soc. Symp. Proc. 762, A5.3. (2003).Google Scholar
  92. 92.
    T. Akasaka and I. Shimizu, Appl. Phys. Lett. 66, 3441 (1995).Google Scholar
  93. 93.
    A. Strass, W. Hansch, P. Bieringer, et al., Surf. Coat. Technol. 97, 158 (1997).Google Scholar
  94. 94.
    J. E. Olsen and F. Shimura, J. Appl. Phys. 66, 1353 (1989).Google Scholar
  95. 95.
    S. Chausserie, N. Khalfaoui, C. Dufour, et al., Opt. Mater. 27, 1026 (2005).Google Scholar
  96. 96.
    M. Modreanu, M. Gartner, C. Cobianu, et al., Thin Solid Films 450, 105 (2004).Google Scholar
  97. 97.
    T. Tagami, Y. Wakayama, and S.-I. Tanaka, Jpn. J. Appl. Phys. 36, L734 (1997).Google Scholar
  98. 98.
    N. Daldosso, G. Das, G. Dalba, et al., Mater. Res. Soc. Symp. Proc. 770, I1.3.1 (2003).Google Scholar
  99. 99.
    M. Zacharias, S. Richter, P. Fischer, et al., J. Non-Cryst. Solids 266–269, 608 (2000).Google Scholar
  100. 100.
    D. J. Lockwood, G. F. Grom, L. Tsybeskov, et al., Phys. E 11, 99 (2001).Google Scholar
  101. 101.
    M. Zacharias, J. Bläsing, K. D. Hirschman, et al., J. Non-Cryst. Solids 266–269, 640 (2000).Google Scholar
  102. 102.
    M. Zacharias and P. Streitenberger, Phys. Rev. B 62, 8391 (2000).Google Scholar
  103. 103.
    P. D. Persans, A. Ruppert, and B. Abeles, J. Non-Cryst. Solids 102, 130 (1988).Google Scholar
  104. 104.
    M. Zacharias, J. Bläsing, P. Veit, et al., Appl. Phys. Lett. 74, 2614 (1999).Google Scholar
  105. 105.
    J. S. d. Souza, G. A. Farias, V. N. Freire, et al., J. Appl. Phys. 84, 5369 (1998).Google Scholar
  106. 106.
    M. Rosini, C. Jacoboni, and S. Ossicini, Phys. E 16, 455 (2003).Google Scholar
  107. 107.
    B. K. Agrawal and S. Agrawal, Appl. Phys. Lett. 77, 3039 (2000).Google Scholar
  108. 108.
    E. Degoli, S. Ossicini, D. Barbato, et al., Mater. Sci. Eng. B 69–70, 444 (2000).Google Scholar
  109. 109.
    E. Degoli and S. Ossicini, Surf. Sci. 470, 32 (2000).Google Scholar
  110. 110.
    E. Degoli and S. Ossicini, Opt. Mater. 17, 95 (2001).Google Scholar
  111. 111.
    B. Delley and E. F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995).Google Scholar
  112. 112.
    E. Degoli, S. Ossicini, M. Luppi, et al., Mater. Res. Soc. Symp. Proc. 770, I1.9.1 (2003).Google Scholar
  113. 113.
    P. Carrier, Z. H. Lu, L. J. Lewis, et al., Appl. Surf. Sci. 212–213, 826 (2003).Google Scholar
  114. 114.
    R. Tsu, Phys. Status Solidi (a) 180, 333 (2000).Google Scholar
  115. 115.
    P. Carrier, L. J. Lewis, and M. W. C. Dharma-wardana, Phys. Rev. B 64, 195330 (2001).Google Scholar
  116. 116.
    P. Carrier, L. J. Lewis, and M. W. C. Dharma-wardana, Phys. Rev. B 65, 165339 (2002).Google Scholar
  117. 117.
    G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 71, 1189 (1997).Google Scholar
  118. 118.
    N. Tit and M. W. C. Dharma-wardana, Solid State Commun. 106, 121 (1998).Google Scholar
  119. 119.
    M. Nishida, Phys. Rev. B 59, 15789 (1999).Google Scholar
  120. 120.
    D. J. Lockwood, M. W. C. Dharma-wardana, N. Tit, et al., Phys. E 6, 201 (2000).Google Scholar
  121. 121.
    J. S. d. Souza, G. A. Farias, and V. N. Freire, Superlattices Microstruct. 25, 377 (1999).Google Scholar
  122. 122.
    B. V. Kamenev, G. F. Grom, D. J. Lockwood, et al., Phys. Rev. B 69, 235306 (2004).Google Scholar
  123. 123.
    X. L. Wu, S. Tong, X. N. Liu, et al., Appl. Phys. Lett. 70, 838 (1997).Google Scholar
  124. 124.
    X. Portier, C. Ternon, F. Gourbilleau, et al., Phys. E 16, 439 (2003).Google Scholar
  125. 125.
    A. Pérez-Rodriguez, A. Cornet, and J. R. Morante, Microelectron. Eng. 40, 223 (1998).Google Scholar
  126. 126.
    P. X. Zhang, I. V. Mitchell, B. Y. Tong, et al., Phys. Rev. B 50, 17080 (1994).Google Scholar
  127. 127.
    J.-M. Baribeau, D. J. Lockwood, and Z. H. Lu, Mater. Res. Soc. Symp. Proc. 382, 259 (1995).Google Scholar
  128. 128.
    R. Sammynaiken, S. J. Naftel, T. K. Sham, et al., J. Appl. Phys. 92, 3000 (2002).Google Scholar
  129. 129.
    L. Y. Zhu, X. F. Huang, W. B. Fan, et al., Superlattices Microstruct. 31, 285 (2002).Google Scholar
  130. 130.
    L. Heikkilä, T. Kuusela, and H.-P. Hedman, Superlattices Microstruct. 26, 157 (1999).Google Scholar
  131. 131.
    C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48, 11024 (1993).Google Scholar
  132. 132.
    R. Rölver, O. Winkler, M. Först, et al., Microelectron. Reliab. 45, 915 (2005).Google Scholar
  133. 133.
    S. Y. Ma, Thin Solid Films 402, 222 (2002).Google Scholar
  134. 134.
    Y. Kanemitsu, Phys. Rev. B 53, 13515 (1996).Google Scholar
  135. 135.
    H. Ennen, J. Schneider, G. Pomrenke, et al., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
  136. 136.
    S. Coffa, IEEE Spectrum 42, 44 (2005).Google Scholar
  137. 137.
    P. G. Kik, M. J. A. de Dood, K. Kikoin, et al., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
  138. 138.
    A. J. Kenyon, Curr. Opin. Solid-State Mater. Sci. 7, 143 (2003).Google Scholar
  139. 139.
    A. J. Kenyon, Prog. Quantum Electron. 26, 225 (2002).Google Scholar
  140. 140.
    E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, et al., Appl. Phys. Lett. 61, 1381 (1992).Google Scholar
  141. 141.
    A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, et al., Phys. Rev. Lett. 71, 517 (1993).Google Scholar
  142. 142.
    E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, et al., Appl. Phys. Lett. 63, 2603 (1993).Google Scholar
  143. 143.
    H. A. Lopez and P. M. Fauchet, Appl. Phys. Lett. 77, 3704 (2000).Google Scholar
  144. 144.
    H. A. Lopez and P. M. Fauchet, Mater. Sci. Eng. B 81, 91 (2001).Google Scholar
  145. 145.
    Y. Zhou, P. A. Snow, and P. S. J. Russel, Appl. Phys. Lett. 77, 2440 (2000).Google Scholar
  146. 146.
    Y. Zhou, P. A. Snow, and P. S. J. Russel, Mater. Sci. Eng. B 81, 40 (2001).Google Scholar
  147. 147.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, et al., Appl. Phys. Lett. 77, 3009 (2000).Google Scholar
  148. 148.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, et al., J. Non-Cryst. Solids 299–302, 694 (2002).Google Scholar
  149. 149.
    M. Lipson, T. D. Chen, D. R. Lim, et al., J. Lumin. 87–89, 323 (2000).Google Scholar
  150. 150.
    M. Lipson and L. C. Kimerling, Appl. Phys. Lett. 77, 1150 (2000).Google Scholar
  151. 151.
    M. Lipson, T. Chen, K. Chen, et al., Mater. Sci. Eng. B 81, 36 (2001).Google Scholar
  152. 152.
    J. H. Shin, W.-H. Lee, and H.-S. Han, Appl. Phys. Lett. 74, 1573 (1999).Google Scholar
  153. 153.
    J. H. Shin, J.-H. Jhe, S.-Y. Seo, et al., Appl. Phys. Lett. 76, 3567 (2000).Google Scholar
  154. 154.
    Y. H. Ha, S. Kim, D. W. Moon, et al., Appl. Phys. Lett. 79, 287 (2001).Google Scholar
  155. 155.
    J.-H. Jhe, J. H. Shin, K. J. Kim, et al., Appl. Phys. Lett. 82, 4489 (2003).Google Scholar
  156. 156.
    M. Schmidt, M. Zacharias, S. Richter, et al., Thin Solid Films 397, 211 (2001).Google Scholar
  157. 157.
    M. Zacharias, J. Heitmann, M. Schmidt, et al., Phys. E 11, 245 (2001).Google Scholar
  158. 158.
    J. Heitmann, M. Schmidt, M. Zacharias, et al., Mater. Sci. Eng. B 105, 214 (2003).Google Scholar
  159. 159.
    V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, et al., Appl. Phys. Lett. 84, 2512 (2004).Google Scholar
  160. 160.
    F. Gourbilleau, C. Ternon, X. Portier, et al., Phys. E 16, 434 (2003).Google Scholar
  161. 161.
    F. Bassani, L. Vervoort, I. Mihalcescu, et al., J. Appl. Phys. 79, 4066 (1996).Google Scholar
  162. 162.
    V. Ioannou-Sougleridis, V. Tsakiri, A. G. Nassiopoulou, et al., Phys. Status Solidi (a) 165, 97 (1998).Google Scholar
  163. 163.
    A. G. Nassiopoulou, V. Tsakiri, V. Ioannou-Sougleridis, et al., J. Lumin. 80, 81 (1999).Google Scholar
  164. 164.
    V. Ioannou-Sougleridis, V. Tsakiri, A. G. Nassiopoulou, et al., Mater. Sci. Eng. B 69–70, 309 (2000).Google Scholar
  165. 165.
    V. Ioannou-Sougleridis, T. Ouisse, A. G. Nassiopoulou, et al., J. Appl. Phys. 89, 610 (2001).Google Scholar
  166. 166.
    V. Ioannou-Sougleridis, A. G. Nassiopoulou, T. Ouisse, et al., Appl. Phys. Lett. 79, 2076 (2001).Google Scholar
  167. 167.
    F. Arnaud d'Avitaya, L. Vervoort, F. Bassani, et al., Europhys. Lett. 31, 25 (1995).Google Scholar
  168. 168.
    F. Bassani, S. Menard, and F. Arnaud d'Avitaya, Phys. Status Solidi (a) 165, 49 (1998).Google Scholar
  169. 169.
    E. Degoli and S. Ossicini, J. Lumin. 80, 411 (1999).Google Scholar
  170. 170.
    N. Ibaraki and H. Fritzsche, Phys. Rev. B 30, 5791 (1984).Google Scholar
  171. 171.
    B. Abeles, L. Yang, P. D. Persans, et al., Appl. Phys. Lett. 48, 168 (1986).Google Scholar
  172. 172.
    P. Santos, M. Hundhausen, and L. Ley, Phys. Rev. B 33, 1516 (1986).Google Scholar
  173. 173.
    L. Yang, B. Abeles, and P. D. Persans, Appl. Phys. Lett. 49, 631 (1986).Google Scholar
  174. 174.
    O. Koblinger, J. Mebert, E. Dittrich, et al., Phys. Rev. B 35, 9372 (1987).Google Scholar
  175. 175.
    S. Kalem, Phys. Rev. B 37, 8837 (1988).Google Scholar
  176. 176.
    Y.-H. Song, C.-C. Eun, C. Lee, et al., Phys. Rev. B 42, 11862 (1990).Google Scholar
  177. 177.
    M. Beaudoin, M. Meunier, and C. J. Arsenault, Phys. Rev. B 47, 2197 (1993).Google Scholar
  178. 178.
    R.-Y. Tsai, L.-C. Kuo, and F. C. Ho, Appl. Opt. 32, 5561 (1993).Google Scholar
  179. 179.
    J. Dutta, I. M. Reaney, P. Roca i Cabarrocas, et al., NanoStruct. Mater. 6, 843 (1995).Google Scholar
  180. 180.
    K. Murayama, T. Toyama, S. Miyazaki, et al., Solid State Commun. 104, 119 (1997).Google Scholar
  181. 181.
    M. Wang, X. Huang, W. Li, et al., Phys. Status Solidi (a) 167, 125 (1998).Google Scholar
  182. 182.
    M. Wang, X. Huang, J. Xu, et al., Appl. Phys. Lett. 72, 722 (1998).Google Scholar
  183. 183.
    X. Huang, L. Wang, J. Li, et al., J. Non-Cryst. Solids 266–269, 1015 (2000).Google Scholar
  184. 184.
    L. Wang, Z. Ma, X. Huang, et al., Solid State Commun. 117, 239 (2001).Google Scholar
  185. 185.
    L. Wang, X. Wang, X. Huang, et al., J. Phys.: Condens. Matter 13, 9857 (2001).Google Scholar
  186. 186.
    L. Wang, X. Huang, Z. Ma, et al., Appl. Phys. A 74, 783 (2002).Google Scholar
  187. 187.
    E. F. Steigmeier, D. Grützmacher, H. Auderset, et al., Thin Solid Films 225, 295 (1995).Google Scholar
  188. 188.
    G. Santana, O. de Melo, J. Aguillar-Hernandez, et al., Phys. Status Solidi (c) 2, 3698 (2005).Google Scholar
  189. 189.
    G. F. Bai, Y. P. Qiao, Z. C. Ma, et al., Appl. Phys. Lett. 72, 3408 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rabah Boukherroub
    • 1
  1. 1.Institut de Recherche Interdisciplinaire (IRI, USR 3078)Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR 8520), Cité ScientifiqueVilleneuve d'AscqFrance

Personalised recommendations