Advertisement

Ultrasonic Emission from Nanocrystalline Porous Silicon

  • Hiroyuki Shinoda*
  • Nobuyoshi Koshida
Part of the Nanostructure Science and Technology book series (NST)

Abstract

A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

Keywords

Porous Silicon Radiation Pressure Acoustic Pressure Thin Metal Film Porous Silicon Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shinoda, H., Nakajima, T., Ueno, K., & Koshida, N. Thermally induced ultrasonic emission from porous silicon, Nature, 400, 853–855, 26 (1999).CrossRefGoogle Scholar
  2. 2.
    Tsubaki, K., Yamanaka, H., Kitada, K., Komoda, T., & Koshida, N. Three-dimensional image sensing in air by thermally induced ultrasonic emitter based on nanocrystalline porous silicon, Jpn. J. Appl. Phys. 44, 4436–4439 (2005).CrossRefGoogle Scholar
  3. 3.
    Arnold, H. D. & Crandall, I. B. The thermophone as a precision source of sound. Phys. Rev. 10, 22–38 (1917).CrossRefGoogle Scholar
  4. 4.
    Amato, G., Benedetto, G., Barino, L., Brunetto, N., & Spagnolo, R. Photothermal and photoacoustic characterization of porous silicon. Opt. Eng. 36, 423–431 (1997).CrossRefGoogle Scholar
  5. 5.
    Calderon, A., Alvarado-Gil, J. J., & Gurevich, Y. G. Photothermal characterization of electrochemical etching processed n-type porous silicon. Phys. Rev. Lett. 79, 5022–5025 (1997).CrossRefGoogle Scholar
  6. 6.
    Holman, J. P. Heat Transfer (McGraw-Hill, New York, 1963).Google Scholar
  7. 7.
    McDonald, F. A. & Wetsel, G. C. Jr Generalized theory of the photoacoustic effect. J. Appl. Phys. 49, 2313–2322 (1978).CrossRefGoogle Scholar
  8. 8.
    Lang, W., Drost, A., Steiner, P., & Sandmaier, H. The thermal conductivity of porous silicon. Mater. Res. Soc. Symp. Proc. 358, 561–566 (1995).Google Scholar
  9. 9.
    Lang, W. in EMIS Data Review Ser. no. 18, Properties of Porous Silicon (ed. Canham, L.) 138–141 (IEE, London, 1997).Google Scholar
  10. 10.
    Kihara, T., Harada, T., & Koshida, N. Precise thermal characterization of confined nanocrystalline silicon by a 3ω Method, Jpn. J. Appl. Phys. 44, 4084–4087 (2005).CrossRefGoogle Scholar
  11. 11.
    Gesele, G., Linsmeier, J., Drach, V., Fricke, J., & Arens-Fischer, R. Temperature-dependent thermal conductivity of porous silicon, J. Phys. D: Appl. Phys., 30, 2911–2916 (1997).CrossRefGoogle Scholar
  12. 12.
    Manthey, W., Kroemer, N., & Magori, V. Ultrasonic transducers and transducer arrays for applications in air. Meas. Sci. Technol. 3, 249–261 (1992).CrossRefGoogle Scholar
  13. 13.
    Mo, J. H., Fowlkes, J. B., Robinson, A. L., & Carson, P. L. Crosstalk reduction with a micromachined diaphragm structure for integrated ultrasonic transducer arrays. IEEE Trans. Ultrasonics Ferroelectr. Freq. Contr. 39, 48–53 (1992).CrossRefGoogle Scholar
  14. 14.
    Goldberg, R. L. & Smith, S. W. Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans. Ultrasonics Ferroelectr. Freq. Contr. 39, 761–771 (1994).CrossRefGoogle Scholar
  15. 15.
    Soh, H. T., Atalar, A., & Khuri-Yakub, B. T. Surface micromachined capacitive ultrasonic transducers. IEEE Trans. Ultrasonics Ferroelectr Freq. Contr. 45, 678–690 (1998).CrossRefGoogle Scholar
  16. 16.
    Haller, M. I. & Khuri-Yakub, B. T. A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans. Ultrasonics Ferroelectr Freq. Contr. 43, 1–6 (1998).CrossRefGoogle Scholar
  17. 17.
    Zhou, S. & Reynolds, P. Precompensated excitation waveforms to suppress harmonic generation in mems electrostatic transducers, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 51, 11, 1564–1574, (2004).CrossRefGoogle Scholar
  18. 18.
    Watabe, Y. , Honda, Y. , & Koshida, N. The characteristics of thermally induced ultrasonic emission from nanocrystalline porous silicon device under impulse operation, Jpn. J. Appl. Phys. 45, 3645–3647 (2006).CrossRefGoogle Scholar
  19. 19.
    Kihara, T., Harada, T., Kato, M., Nakano, K., Murakami, O., Kikusui, T., & Koshida, N. Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter, Appl. Phys. Lett. 88, 043902–043904, (2006).CrossRefGoogle Scholar
  20. 20.
    Nyby J. & Whitney, G. Neurosci. Biobehav. Rev. 2, 1 (1978).CrossRefGoogle Scholar
  21. 21.
    Sewell, G.D., Nature (London) 227, 410 (1970).CrossRefGoogle Scholar
  22. 22.
    Hirota, J., Shinoda, H., & Koshida, N. Generation of radiation pressure in thermally induced ultrasonic emitter based on nanocrystalline silicon, Jpn. J. Appl. Phys. 43, 4B, 2080–2082, (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hiroyuki Shinoda*
    • 1
  • Nobuyoshi Koshida
    • 1
  1. 1.University of TokyoJapan

Personalised recommendations