Si-Rich Dielectrics for Active Photonic Devices

  • L. C. Kimerling
  • L. Dal Negro
  • M. Stolfi
  • J. H. Yi
  • J. Michel
  • X. Duan
  • E. H. Sargent
  • T.-W. F. Chang
  • V. Sukhovatkin
  • J. Haavisto
  • J. LeBlanc
Part of the Nanostructure Science and Technology book series (NST)


The quest to develop an efficient Si-based light emitter has stimulated research worldwide. Among the several approaches being considered, enhancing the probability of light emission through the use of Si nanocrystals embedded in SiO2 shows considerable promise due to the demonstration of efficient room temperature light emission and optical gain. In this chapter, we compare the nucleation, light emission, and emission sensitization of Si nanocrystals embedded in Si-rich oxide and Si-rich nitride. Based on the results of our study, we identify Si nanocrystal emission from Si-rich nitride and Er doping of Si-rich oxide as materials systems that satisfy the requirements of CMOS compatible processing and high emission efficiency for integration with Si-based electronics. We also present PbS quantum dot emission sensitization through Si nanocrystals in Si-rich nitride, an alternative approach to achieving efficient infrared emission on a Si platform. The improved electrical properties and high refractive index of Si-rich nitride also allows for the fabrication of electroluminescent devices with small footprints and active, complex photonic crystal devices for multiwavelength applications.


Excitation Cross Section Morse Sequence Emission Sensitization High Emission Efficiency Stoichiometric SiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by: the MRSEC program of the National Science Foundation under Contract No. DMR 02–13282, by the Draper Laboratory Incorporated Subcontract No. DL-H-546257 and by Pirelli Laboratories. We also acknowledge Dr. X. Duan for TEM sample preparation and imaging.


  1. 1.
    D. K. Sparacin, S. J. Spector and L. C. Kimerling, IEEE J. Lightwave Technol., 23(8), 2455 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, Nature, 427, 615 (2004).CrossRefGoogle Scholar
  3. 3.
    V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, Nature, 431, 1081 (2004).CrossRefGoogle Scholar
  4. 4.
    O. Boyraz and B. Jalali, Opt. Express, 12, 5269 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, Nature, 433, 292 (2005).CrossRefGoogle Scholar
  6. 6.
    L. T. Canham, Appl. Phys. Lett., 57(10), 1046 (1990).CrossRefGoogle Scholar
  7. 7.
    Z. H. Lu, D. J. Lockwood and J. M. Baribeau, Nature, 378, 258 (1995).CrossRefGoogle Scholar
  8. 8.
    K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature, 384, 338 (1996).CrossRefGoogle Scholar
  9. 9.
    L. Pavesi, S. Gaponenko and L. Dal Negro, eds., Towards the First Silicon Laser, NATO Advanced Studies Institute, Series 11, vol. 93, Kluwer, Dordrecht, 2003.Google Scholar
  10. 10.
    L. Pavesi and D. J. Lockwood, eds., Silicon Photonics, Springer, Berlin, 2004.Google Scholar
  11. 11.
    J. C. Vial, A. Bsiesy, F. Gaspard, R. Hèrino, M. Ligeon, F. Muller, R. Romestain and R. M. Macfarlane, Phys. Rev. B., 45(24), 14171 (1992).CrossRefGoogle Scholar
  12. 12.
    B. Gelloz, T. Nakagawa and N. Koshida, Appl. Phys. Lett., 73(14), 2021 (1998).CrossRefGoogle Scholar
  13. 13.
    K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature, 384, 338 (1996).CrossRefGoogle Scholar
  14. 14.
    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò and F. Priolo, Nature, 408, 440 (2000).CrossRefGoogle Scholar
  15. 15.
    L. Khriachtchev, M. Rasanen, S. Novikov and J. Sinkkonen, Appl. Phys. Lett., 79(9), 1249 (2001).CrossRefGoogle Scholar
  16. 16.
    L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo and F. Iacona, Appl. Phys. Lett., 82(26), 4636 (2003).CrossRefGoogle Scholar
  17. 17.
    J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli and L. Pavesi, Appl. Phys. Lett., 83(26), 5479 (2003).CrossRefGoogle Scholar
  18. 18.
    L. Dal Negro, M. Cazzanelli, B. Danese, L. Pavesi, F. Iacona, G. Franzò and F. Priolo, J. Appl. Phys., 96(10), 5747 (2004).CrossRefGoogle Scholar
  19. 19.
    M. Cazzanelli, D. Kovalev, L. Dal Negro, Z. Gaurro and L. Pavesi, Phys. Rev. Lett., 93(20), 207402 (2004).CrossRefGoogle Scholar
  20. 20.
    A. J. Kenyon, P. F. Trwoga, M. Federighi and C. W. Pitt, J. Phys. Condens. Matter, 6, L319 (1994).CrossRefGoogle Scholar
  21. 21.
    M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi and K. Yamamoto, Appl. Phys. Lett., 71(9), 1198 (1997).CrossRefGoogle Scholar
  22. 22.
    G. Franzò, F. Iacona, V. Vinciguerra and F. Priolo, Mater. Sci. Eng. B, 69/70, 338 (1999).Google Scholar
  23. 23.
    P. G. Kik, M. L. Brongersma and A. Polman, Appl. Phys. Lett., 76(17), 2325 (2000).CrossRefGoogle Scholar
  24. 24.
    F. Priolo, G. Franzò, F. Iacona, D. Pacifici and V. Vinciguerra, Mater. Sci. Eng. B, 81(1–3), 9 (2001).CrossRefGoogle Scholar
  25. 25.
    J. H. Shin, M.-J. Kim, S.-Y. Seo and C. Lee, Appl. Phys. Lett., 72(9), 1092 (1998).CrossRefGoogle Scholar
  26. 26.
    M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan and C. Delerue, Phys. Rev. Lett., 82(1), 197 (1999).CrossRefGoogle Scholar
  27. 27.
    A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder and G. Galli, Phys. Rev. Lett., 89(19), 196803 (2002).CrossRefGoogle Scholar
  28. 28.
    A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, J. Chem. Phys., 117(14), 6721 (2002).CrossRefGoogle Scholar
  29. 29.
    E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi and S. Ossicini, Phys. Rev. B, 69(15), 155411 (2004).CrossRefGoogle Scholar
  30. 30.
    N. M. Park, C. J. Choi, T. Y. Seong and S. J. Park, Phys. Rev. Lett., 86(7), 1355 (2001).CrossRefGoogle Scholar
  31. 31.
    L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel and L. C. Kimerling, Appl. Phys. Lett., 86, 261905 (2005).CrossRefGoogle Scholar
  32. 32.
    T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong and C. J. Choi, Appl. Phys. Lett., 85(22), 5355 (2004).CrossRefGoogle Scholar
  33. 33.
    K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung and J. H. Shin, Appl. Phys. Lett., 86, 071909 (2005).CrossRefGoogle Scholar
  34. 34.
    L. A. Nesbit, Appl. Phys. Lett., 46(1), 38 (1985).CrossRefGoogle Scholar
  35. 35.
    T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita and N. Itoh, J. Appl. Phys., 75(12), 7779 (1993).CrossRefGoogle Scholar
  36. 36.
    K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma and A. Polman, Appl. Phys. Lett., 69(14), 2033 (1996).CrossRefGoogle Scholar
  37. 37.
    F. Iacona, G. Franzò and C. Spinella, J. Appl. Phys., 87(3), 1295 (2000).CrossRefGoogle Scholar
  38. 38.
    S. Hayashi, T. Nagareda, Y. Kzawa and K. Yamamoto, Jpn. J. Appl. Phys., 32, 3840 (1993).CrossRefGoogle Scholar
  39. 39.
    U. Kahler and H. Hoffmeister, Opt. Mater., 17(1–2), 83 (2001).CrossRefGoogle Scholar
  40. 40.
    J. Valenta, P. Janda, K. Dohnalová, D. Niž ansky, F. Vácha and J. Linnros, Opt. Mater., 27(5), 1046 (2005).CrossRefGoogle Scholar
  41. 41.
    G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud, Appl. Phys. Lett., 80(25), 4834 (2002).CrossRefGoogle Scholar
  42. 42.
    S. Botti, R. Coppola, F. Gourbilleau and R. Rizk, J. Appl. Phys., 88(6), 3396 (2000).CrossRefGoogle Scholar
  43. 43.
    J. P. Wilcoxon, G. A. Samara and P. N. Provencio, Phys. Rev. B, 60(4), 2704 (1999).CrossRefGoogle Scholar
  44. 44.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey and D. J. Lockwood, Appl. Phys. Lett., 72(1), 43 (1998).CrossRefGoogle Scholar
  45. 45.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Bläsing, Appl. Phys. Lett., 80(4), 661 (2002).CrossRefGoogle Scholar
  46. 46.
    D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd Edition, Chapman and Hall, London, 1992.Google Scholar
  47. 47.
    J. W. Christian, The Theory of Transformations in Metals and Alloys Parts I and II, 3rd Edition, Elsevier, Oxford, 2002.Google Scholar
  48. 48.
    D. J. Olego and H. Baumgart, J. Appl. Phys., 63(8), 2669 (1988).CrossRefGoogle Scholar
  49. 49.
    I. H. Campbell and P. M. Fauchet, Solid State Commun., 58(10), 739 (1986).CrossRefGoogle Scholar
  50. 50.
    Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi and H. Mimura, Phys. Rev. B., 48(4), 2827 (1993).CrossRefGoogle Scholar
  51. 51.
    P. Mishra and K. P. Jain, Phys. Rev. B., 64(7), 073304 (2001).CrossRefGoogle Scholar
  52. 52.
    E. W. Draeger, J. C. Grossman, A. J. Williamson and G. Galli, Phys. Rev. Lett., 90(16), 167402 (2003).CrossRefGoogle Scholar
  53. 53.
    G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn and V. Paillard, Phys. Rev. B, 62(23), 15942 (2000).CrossRefGoogle Scholar
  54. 54.
    G. Franzò, F. Iacona, C. Spinella, S. Cammarata and M. Grazia Gimaldi, Mater. Sci. Eng. B, 69–70, 454 (2000).CrossRefGoogle Scholar
  55. 55.
    J. Linnros, N. Lalic, A. Galeckas and V. Grivickas, J. Appl. Phys., 86(11), 6128 (1999).CrossRefGoogle Scholar
  56. 56.
    F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona and A. Irrera, J. Appl. Phys., 89(1), 264 (2001).CrossRefGoogle Scholar
  57. 57.
    I. Sychugov, R. Juhasz, A. Galeckas, J. Valenta and J. Linnros, Opt. Mater., 27(5), 973 (2005).CrossRefGoogle Scholar
  58. 58.
    D. Kovalev, H. Heckler, G. Polisski and F. Koch, Phys. Status Solidi, 215, 871 (1999).CrossRefGoogle Scholar
  59. 59.
    J. H. Shin, S.-Y. Seo, S. Kim and S. G. Bishop, Appl. Phys. Lett., 76(15), 1999 (2000).CrossRefGoogle Scholar
  60. 60.
    J. Lee, J. H. Shin and N. Park, J. Lightwave Technol., 23(1), 19 (2005).CrossRefGoogle Scholar
  61. 61.
    G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica and F. Priolo, Appl. Phys. A, 74(1), 1 (2002).CrossRefGoogle Scholar
  62. 62.
    J. H. Shin, K.-S. Cho, J.-H. Jhe, G. Y. Sung, B.-H. Kim and S. J. Park, Proc. SPIE, 31, 5359 (2004).Google Scholar
  63. 63.
    G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona and C. Bongiorno, Appl. Phys. Lett., 82(2), 3871 (2003).CrossRefGoogle Scholar
  64. 64.
    M. Stolfi, L. Dal Negro, J. Michel, X. Duan, J. LeBlanc, J. Haavisto and L. C. Kimerling, Mater. Res. Soc. Symp. Proc. 832, F11.8 (2005).Google Scholar
  65. 65.
    L. Dal Negro, M. Stolfi, J. Michel, J. LeBlanc, J. Haavisto, L.C. Kimerling, Proceedings of the 2nd IEEE International Conference on Group IV Photonics (IEEE Cat. No. 05EX1053), 87 (2005).Google Scholar
  66. 66.
    L. Dal Negro, J. H. Yi, M. Hiltunen, J. Michel, L. C. Kimerling, S. Hamel, A. J. Williamson, G. Galli, T.-W. F. Chang, V. Sukhovatkin and E. H. Sargent, J. Exp. Nanosci., 1(1), 29–50 (2006).CrossRefGoogle Scholar
  67. 67.
    L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin and E. H. Sargent, Appl. Phys. Lett., 88, 233109 (2006).CrossRefGoogle Scholar
  68. 68.
    T.-W. F. Chang, A. Maria, P. W. Cyr, V. Sukhovatkin, L. Levina and E. H. Sargent, Synth. Met. 148, 257 (2005).CrossRefGoogle Scholar
  69. 69.
    J. C. de Mello, H. F. Wittmann and R. H. Friend, Adv. Mater., 9, 230 (1997).CrossRefGoogle Scholar
  70. 70.
    The Qbox71 code was used for the structural relaxation and the ABINIT72 code was used to evaluate gaps and oscillator strength. All calculations use norm conserving, Troullier-Martins pseudopotentials for the core electrons and a plane-wave basis with a 70 Ry cutoff.Google Scholar
  71. 71.
    F. Gygi, Lawrence Livermore National Laboratory, Internal communicationGoogle Scholar
  72. 72.
    The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL
  73. 73.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45(7), 566 (1980).CrossRefGoogle Scholar
  74. 74.
    L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson and G. Galli, Appl. Phys. Lett., 88, 183103 (2006).CrossRefGoogle Scholar
  75. 75.
    M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min and H.A. Atwater, Appl. Phys. Lett., 76(3), 351 (2000).CrossRefGoogle Scholar
  76. 76.
    S. V. Deshpande, E. Gulari, S. W. Brown and S. C. Rand, J. Appl. Phys., 77(12), 6534 (1995).CrossRefGoogle Scholar
  77. 77.
    F. Gourbilleau, P. Choppinet, C. Dufour, M. Levalois, R. Madelon, C. Sada, G. Battaglin and R. Rizk, Phys. E, 16(3), 331 (2003).CrossRefGoogle Scholar
  78. 78.
    T. Miyakawa and D. L. Dexter, Phys. Rev. B, 1(7), 2961 (1970).CrossRefGoogle Scholar
  79. 79.
    L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson and G. Galli, IEEE J. Select. Topics Quantum Electron., 12(6), 1628 (2006)CrossRefGoogle Scholar
  80. 80.
    E. H. Sargent, Adv. Mater., 17(5), 515 (2005).CrossRefGoogle Scholar
  81. 81.
    S. A. McDonald, P. W. Cyr, L. Levina and E. H. Sargent, Nat. Mater., 4(2), 138 (2005).CrossRefGoogle Scholar
  82. 82.
    L. Bakueva, S. Musikhin, M. A. Hines, T.-W. Chang, M. Tzolov, G. D. Scholes and E. H. Sargent, Appl. Phys. Lett., 82(17), 2895 (2003).CrossRefGoogle Scholar
  83. 83.
    E. J. D. Klem, L. Levina and E. H. Sargent, Appl. Phys. Lett., 87(5), 053101 (2005).CrossRefGoogle Scholar
  84. 84.
    V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva and E. H. Sargent, Opt. Lett., 30(2), 171 (2005).CrossRefGoogle Scholar
  85. 85.
    M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias and U. Gösele, J. Appl. Phys., 96(6), 3164 (2004).CrossRefGoogle Scholar
  86. 86.
    C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, J. Lightwave Technol., 17(9), 1682 (1999).CrossRefGoogle Scholar
  87. 87.
    L. H. Slooff, P. G. Kik, A. Tip and A. Polman, J. Lightwave Technol., 19(11), 1740 (2001).CrossRefGoogle Scholar
  88. 88.
    D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus and L. C. Kimerling, Proc. SPIE, 3847, 65 (1999).CrossRefGoogle Scholar
  89. 89.
    L. Yang, D. K. Armani and K. J. Vahala, Appl. Phys. Lett., 83(5), 825 (2003).CrossRefGoogle Scholar
  90. 90.
    N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gorbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido and L. Cognolato, Appl. Phys. Lett., 86, 261103 (2005).CrossRefGoogle Scholar
  91. 91.
    H.-S. Han, S.-Y. Seo and J. H. Shin, Appl. Phys. Lett., 79(27), 4568 (2001).CrossRefGoogle Scholar
  92. 92.
    J. De La Torre, A. Souifi, A. Poncet, C. Busseret, M. Lemiti, G. Bremond, G. Guillot, O. Gonzalez, B. Garrido, J. R. Morante and C. Bonafos, Phys. E, 16(3–4), 326 (2003).CrossRefGoogle Scholar
  93. 93.
    A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona, G. Sanfilippo, G. Di Stefano and P. G. Fallica, Appl. Phys. Lett., 81(10), 1866 (2002).CrossRefGoogle Scholar
  94. 94.
    R. J. Walters, G. I. Bourianoff and H. A. Atwater, Nat. Mater., 4, 143 (2005).CrossRefGoogle Scholar
  95. 95.
    P. E. de Brito, C. A. A. Da Silva and N. H. Nazareno, Phys. Rev. B, 51(9), 6096 (1995).CrossRefGoogle Scholar
  96. 96.
    M. Dulea, M. Johansson and R. Riklund, Phys. Rev. B, 45(1), 105 (1992).CrossRefGoogle Scholar
  97. 97.
    F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli and F. Priolo, J. Appl. Phys., 95(7), 3723 (2004).CrossRefGoogle Scholar
  98. 98.
    E. Yablonovitch, Phys. Rev. Lett., 58(20), 2059 (1987).CrossRefGoogle Scholar
  99. 99.
    S. John, Phys. Rev. Lett., 58(23), 2486 (1987).CrossRefGoogle Scholar
  100. 100.
    J. D. Joannopoulos, P. R. Villeneuve and S. Fan, Nature (London), 386, 143 (1997).CrossRefGoogle Scholar
  101. 101.
    P. W. Anderson, Philos. Mag., 52, 505 (1985).CrossRefGoogle Scholar
  102. 102.
    S. John, Phys. Rev. Lett., 53(22), 2169 (1984).CrossRefGoogle Scholar
  103. 103.
    M. P. van Albada and A. Lagendijk, Phys. Rev. Lett., 55(24), 2692 (1985).CrossRefGoogle Scholar
  104. 104.
    D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, Nature (London), 390, 671 (1997).CrossRefGoogle Scholar
  105. 105.
    F. Nori and J. P. Rodriguez, Phys. Rev. B, 34(4), 2207 (1986).CrossRefGoogle Scholar
  106. 106.
    R. B. Capaz, B. Koiller and S. L. A. de Queiroz, Phys. Rev. B, 42(10), 6402 (1990).CrossRefGoogle Scholar
  107. 107.
    T. Fujiwara, M. Kohmoto and T. Kokihiro, Phys. Rev. B, 40(10), 7413 (1989).CrossRefGoogle Scholar
  108. 108.
    C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett., 48(15), 1043 (1982).CrossRefGoogle Scholar
  109. 109.
    M. Kohmoto, B. Southerland and C. Tang, Phys. Rev. B, 35(3), 1020 (1987).CrossRefGoogle Scholar
  110. 110.
    E. Maciá, Phys. Rev. B, 60(14), 10032 (1999).CrossRefGoogle Scholar
  111. 111.
    Z. M. Cheng, R. Savit and R. Merlin, Phys. Rev. B, 37(9), 4375 (1988).CrossRefGoogle Scholar
  112. 112.
    M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, vol. 1294, Springer, Berlin, 1987.Google Scholar
  113. 113.
    F. Axel, J. P. Allouche, M. Kleman, M. Mendès-France and J. Peyrière, J. Phys., (Paris), Colloq., 47, C3–C181 (1986).CrossRefGoogle Scholar
  114. 114.
    N.-H. Liu, Phys. Rev. B, 55(6), 3543 (1997).CrossRefGoogle Scholar
  115. 115.
    L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc and J. Haavisto, Appl. Phys. Lett., 84(25), 5186 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L. C. Kimerling
    • 1
  • L. Dal Negro
    • 2
    • 3
  • M. Stolfi
  • J. H. Yi
  • J. Michel
  • X. Duan
  • E. H. Sargent
  • T.-W. F. Chang
  • V. Sukhovatkin
  • J. Haavisto
  • J. LeBlanc
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Electrical and Computer EngineeringBoston UniversityBoston
  3. 3.Massachusetts 02215 and Materials Science DivisionBoston UniversityBoston

Personalised recommendations