Towards a Reconstruction of Land Use Potential

Case Studies from the Western Desert of Egypt
  • Andreas Bolten
  • Olaf Bubenzer
  • Frank Darius
  • Karin Kindermann
Part of the Studies in Human Ecology and Adaptation book series (STHE, volume 4)


This chapter is situated in the field among archaeology, geomorphology, and ecology. Two case studies from different east-Saharan landscape units classify and analyse archaeological, geoscientific, and remote-sensing data of Early and Mid-Holocene archaeological sites. The section combines the approaches of landscape ecology and landscape archaeology. The aim is a parameterisation of the research areas with respect to structural and ecological features. The data were used within a Geographical Information System (GIS), a hydromodelling, and statistical software. The analysis allows an indication of the observed landscape parameters that are essential for the location of the sites within each time slice. Therefore, the study broadens the understanding of the man–environment relationships.With the help of this integral and autochthonous landscape inspection it is possible to reconstruct the past potential of the utilisation of such arid landscapes. Such an approach also helps in locating new archaeological sites within landscape units. At the end a first suggestion for a model of interacting key variables and the general landscape development of the Western Desert during the Early and Mid-Holocene is presented.


Archaeological Site Digital Elevation Model Stone Tool Western Desert Nubian Sandstone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams, M. (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21, 847–859.CrossRefGoogle Scholar
  2. Adams, J.M. & Faure, H. (Eds.) (1997). QEN members. Review and atlas of palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National Laboratory, TN, 1999 (
  3. Alaily, F. (1993). Soil association and land suitability maps of the Western Desert, SW Egypt. Catena Suppl., 26, 123–153.Google Scholar
  4. Anhuf, D. (1997). Paleovegetation in West Africa for 18.000 B.P. and 8.500 B.P. Eiszeitalter und Gegenwart, 47, 112–119.Google Scholar
  5. Anhuf, D. & Frankenberg, P. (2000). Die mittelholozäne Feuchtphase 5000 BP – Eine Vegetationsrekonstruktion für Afrika. Regensburger Geogr. Schriften, 33, 99–126.Google Scholar
  6. Barbour, M.G., Burk, J.H., Pitts, W.D., Gilliam, F. & Schwartz, M. (1999). Terrestrial Plant Ecology. Addison Wesley/Longman.Menlo Park, CA:Google Scholar
  7. Bastian, O. (1999). Landschaftsbewertung und Leitbildentwicklung auf der Basis von Mikrogeochoren. In Steinhardt & U. Volk (Eds.), M. Regionalisierung in der Landschaftsökologie (pp. 287–298). Stuttgart, Leipzig: Teudner.CrossRefGoogle Scholar
  8. Bastian, O. & Steinhardt, U. (Eds.) (2002). Development and Perspectives of Landscape Ecology. Boston: Kluwer.Google Scholar
  9. Besler, H. (2002). The Great Sand (Egypt) during the late Pleistocene and the Holocene. Zeitschrift für Geomorphologie., Suppl.-Bd127, 1–19.Google Scholar
  10. Bolten, A. & Bubenzer, O. (2006). New elevation data (SRTM/ASTER) for geomorphological and geoarchaeological research in arid regions. Zeitschrift für Geomorphologie, Suppl. 142, 265–279.Google Scholar
  11. Bornkamm, R. & Darius, F. (1999). Probleme der Landnutzungsplanung in der Extremwüste Süd-Ägypten. TU International, 46/47, 39–42.Google Scholar
  12. ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.CrossRefGoogle Scholar
  13. ter Braak, C.J.F. (1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, 1, 127–140.Google Scholar
  14. ter Braak, C.J.F. & Smilauer, P. (1998). CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (Version 4). Centre for Biometry.Wageningen:Google Scholar
  15. Bubenzer, O. & Besler, H. (2005). Human occupation of Sand Seas during the Early and Mid-Holocene. Examples from Egypt. Zeitschrift für Geomorphologie, Suppl. 138, 153–165.Google Scholar
  16. Bubenzer, O. & Bolten, A. (2003). Detecting areas with different land use potential. In Egypt, Sudan, and Namibia, GIS helps compare human strategies of coping with arid habitats. ArcNews, 25, 2.Google Scholar
  17. Bubenzer, O. & Bolten, A. (2008). The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology (in press, available online).Google Scholar
  18. Bubenzer, O. & Hilgers, A. (2003). Luminescence dating of Holocene playa deposits of the Egyptian Plateau, Western Desert, Egypt. Quaternary Science Reviews, 22, 1077–1084.CrossRefGoogle Scholar
  19. Bubenzer, O. & Riemer, H. (2007). Holocene climatic change and human settlement between the central Sahara and the Nile Valley: Archaeological and geomorphological results. Geoarchaeology, 22, 607–620.CrossRefGoogle Scholar
  20. Bubenzer, O., Besler, H. & Hilgers, H. (2007b). Filling the gap: OSL data expanding 14C chronologies of Late Quaternary environmental change in the Libyan Desert Quaternary International, 175, 41–52.CrossRefGoogle Scholar
  21. Bubenzer, O., Bolten, A. & Darius, F. (Eds.) (2007a). Atlas of Cultural and Environmental Change in Arid Africa. Africa Praehistorica, Heinrich-Barth-Institut e.V.Cologne: 21, –240 p.Google Scholar
  22. Bubenzer, O., Bolten, A. & Ritter, M. (2007c). Scale-specific geomorphometry of arid regions – Examples from the eastern Sahara. Proceedings of an International ACACIA Conference. held at Königswinter, Germany, October 1–3, 2003 Colloquium Africanum, 2: 17–34. Cologne: Heinrich-Barth-Institut e.V.Google Scholar
  23. Bubenzer, O., Hilgers, A. & Riemer, H. (2006). Luminescence dating and archaeology of Holocene fluvio-lacustrine sediments of Abu Tartur, Eastern Sahara. Quaternary Geochronology, 2, 314–321.CrossRefGoogle Scholar
  24. El Kady, H.F., Ayyad, M.A. & Bornkamm, R. (1995). Vegetation and recent land-use history in the desert of Maktala, Egypt. In Blume H.-P. Berkowicz (Eds.), & S. Arid Ecosystems Cremlingen-Destedt: Catena.(pp. 109–123).Google Scholar
  25. EOS DG (2007): Earth Observing System Data Gateway (
  26. Farshad, A. (2001). Reconstruction of the evolution of the past agrarian landscape as a clue for assessing sustainability: A case study of Iran. In D. Van der Zee & I.S. Zonneveld (Eds.), Landscape Ecology Applied in Land Evaluation, Development and Conservation. Some Worldwide Selected Examples (pp. 1–48.) ITC publication, 81. International Institute for Aerospace Survey and Earth Sciences, Enschede.Google Scholar
  27. Fujisada, H. (1998). ASTER level-1 data processing algorithm. IEEE Transactions and Remote Sensing, 36, 1101–1112.CrossRefGoogle Scholar
  28. Garbrecht, J. (2000). TOPAZ User Manual (
  29. Gardner, I.S. (1977). Physical Geography. Harper’s College Press.New York:Google Scholar
  30. Gehlen, B., Kindermann, K., Linstädter, J. & Riemer, H. (2002). The Holocene occupation of the Eastern Sahara: Regional chronologies and supra-regional developments in four areas of the Absolute Desert. In: Jennerstr. 8 Tides of the Desert – Gezeiten der Wüste Contributions to the Archaeology and Environmental History of Africa in Honour of Rudolph Kuper. Africa Praehistorica8 (eds.): Heinrich-Barth-Institut.Cologne: (pp. 85–116). Vol. 14,Google Scholar
  31. Haase, G. (1996). Geotopologie und geochorologie – Die Leipzig-Dresdener Schule der Landschaftsökologie. In Haase & G. Eichler (Eds.), E. Wege und Fortschritte der Wissenschaft; Sächsische Akademie der Wissenschaften zu Leipzig Akademie-Verlag Berlin.Berlin: (pp. 201–229).Google Scholar
  32. Haynes, V.C. (2001). Geochronology and climate change of the Pleistocene-Holocene transition in the Darb el Arba?in Desert, Eastern Sahara. Geoarchaeology, 16, 119–141.CrossRefGoogle Scholar
  33. Jäkel, D. & Rückert, H. (1998). Recent rainfall distribution patterns of the Republic of Sudan as a model for rainfall variations in the past and climate induced geomorphological processes in Sahelian countries. Paleoecology of Africa, 25, 101–120.Google Scholar
  34. Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H. & Kargel, J. (2002). Glacier monitoring from ASTER imagery: Accuracy and applications. Proceedings LIS-SIG Workshop Berne, March 11–13, 2002.Google Scholar
  35. Kehl, H. & Bornkamm, R. (1993). Landscape ecology and vegetation units of the Western Desert of Egypt. Catena, 26, 155–178.Google Scholar
  36. Kindermann, K. (2003). Djara: Prehistoric links between the Desert and the Nile. In Z. Hawass & L. Pich Brock (Eds.), Egyptology at the Dawn of the Twenty-First Century. Proceedings of the Eighth International Congress of Egyptologists (pp. 272–279). Cairo.Google Scholar
  37. Kindermann, K. (2004). Djara: Excavations and surveys of the 1998–2002 seasons. Archéo-Nil, 14, 31–50.Google Scholar
  38. Kindermann, K. (2006). Djara. Zur mittelholozänen Besiedlungsgeschichte zwischen Niltal und Oasen (Abu-Muhariq-Plateau, Ägypten). (Unpublished Ph.D. thesis, Köln 2006).Google Scholar
  39. Kindermann, K. & Bubenzer, O. (2007). Djara – Humans and their environment on the Egyptian limestone plateau around 8,000 years ago. In Bubenzer, O. Bolten & A. Darius (Eds.), F. Atlas of Cultural and Environmental Change in Arid Africa Africa Praehistorica Heinrich-Barth-Institut e.V.Cologne: (pp. 26–29). Vol. 21,Google Scholar
  40. Kindermann, K., Bubenzer, O., Nussbaum, S., Riemer, H., Darius, F., Pöllath, N. & Smettan, U. (2006). Palaeoenvironment and Holocene land use of Djara, Western Desert of Egypt. Quaternary Science Reviews, 25, 1619–1637.CrossRefGoogle Scholar
  41. Kröpelin, S. (1993). Geomorphology, landscape evolution and paleoclimates of Southwest Egypt. Catena, Suppl. 26, 31–65.Google Scholar
  42. Kuper, R. (1989). The Eastern Sahara from north to south: Data and dates from the B.O.S. Project. In Krzyżaniak & L. Kobusiewicz (Eds.), M. Late Prehistory of the Nile Basin and the Sahara. Studies in African Archaeology Poznan Archaological Museum.Poznan: (pp. 197–203).Google Scholar
  43. Kuper, R. (2002). Routes and roots in Egypt’s Western Desert: The Early Holocene resettlement of the Eastern Sahara. In Friedman (Ed.), R. Egypt and Nubia. Gifts of the Desert The British Museum Press.London: (pp. 1–12 (pl. 1–24)).Google Scholar
  44. Kuper, R. (2006). After 5000 BC: The Libyan desert in transition. C.R. Palevol, 5, 409–419.CrossRefGoogle Scholar
  45. Kuper, R. & Kröpelin, S. (2006). Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science, 313, 803–807.CrossRefGoogle Scholar
  46. Kutter, A., Nachtergaele, F.O. & Verheye, W.H. (1997). The new FAO approach to land use planning and management, and its application in Sierra Leone. ITC Journal, 3/4, 278–283.Google Scholar
  47. Leser, H. (1997). Landschaftsökologie. Ansatz, Modelle, Methodik, Anwendung. Ulmer.Stuttgart:Google Scholar
  48. McCune, B. & Mefford, M.J. (1999). PC-ORD. Multivariate Analysis of Ecological Data. MjM Software.Gleneden Beach, OR: Version 4.0. Google Scholar
  49. Myburgh, J. (1974). An index to relate local topography to mean minimum temperatures. Agrochemophysica, 6, 73–78.Google Scholar
  50. Naveh, Z. (1995). Interactions of landscapes and cultures. Landscape and Urban Planning, 32, 43–54.CrossRefGoogle Scholar
  51. Neumann, K. (1989). Holocene vegetation of the Eastern Sahara: Charcoals from prehistoric sites. African Archaeological Review, 7, 97–116.CrossRefGoogle Scholar
  52. de Noblet-Ducoudré, N., Claussen, M. & Prentice, C. (2000). Mid-Holocene greening of the Sahara: First results of the GAIM 6000 year BP experiment with two asynchronously coupled atmosphere/biome models. Climate Dynamics, 16, 643–659.CrossRefGoogle Scholar
  53. Pachur, H.-J. & Altmann, N. (2006). Die Ostsahara im Spätquartär. Ökosystemwandel im größten hyperariden Raum der Erde. Berlin: Springer.Google Scholar
  54. Penck, A. (1894). Morphologie der Erdoberfläche. J. Engelhorn.Stuttgart:Google Scholar
  55. Prentice, I.C., Jolly, D. & (2000). Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography, 27, 507–519.BIOME 6000 participantsCrossRefGoogle Scholar
  56. Richthofen, F.v. (1877). Die heutigen Aufgaben der wissenschaftlichen Geographie. In Richthofen (Ed.), F.v. China, Bd. 1 D. Reimer.Berlin: (pp. 729–733).Google Scholar
  57. Riemer, H. (2000). Regenfeld 96/1 – Great Sand Sea and the question of human settlement on whaleback dunes. In Krzyżaniak, L. Kroeper & K. Kobusiewicz (Eds.), M. Recent Research into the Stone Age of Northeastern Africa. Studies in African Archaeology Poznan Archaological Museum.Poznan: (pp. 21–31).Google Scholar
  58. Riemer, H. (2006). Archaeology and environment of the Western Desert of Egypt: 14 C-based human occupation history as an archive for Holocene palaeoclimatic reconstruction. In Youssef & El-Sayed, A.A.Geology of the Tethys. Proceedings of the First International Conference on the Geology of the Tethys Cairo University 2005, The Tethys Geological Society.Cairo: (pp. 553–564).Google Scholar
  59. Rohdenburg, H. (1989). Landschaftsökologie – Geomorphologie. Catena Verlag.Cremlingen:Google Scholar
  60. Schild, R. & Wendorf, F. (2001). Geoarchaeology of the Holocene climatic optimum at Nabta Playa, Southwest Desert, Egypt. Geoarchaeology, 16, 7–28.CrossRefGoogle Scholar
  61. Schmidt, J. & Dikau, R. (1999). Extracting geomorphometric attributes and objects from digital elevation models – Semantics, methods, future needs. In Dikau & R. Saurer (Eds.), H. GIS for Earth Surface Systems Gebrüder Borntraeger.Stuttgart: (pp. 153–174).Google Scholar
  62. Schulz, E., Akhtar-Schuster, M., Agwu, Ch., Beck, C., Dupont, L., Jahns, S., Niedermeyer, M., Ousseini, I. & Salzmann, U. (2001). The Holocene Landscape and Vegetation History of Northern and Western Africa – A Palaeoecological Atlas (
  63. Spikins, P. (2000). GIS models of past vegetation: An example from Northern England, 10000–15000 BP. Journal of Archaeological Science, 27, 219–234.CrossRefGoogle Scholar
  64. Syrbe, R.-U. (2002). Entwicklung von Struktur und Funktionsweise in der Landschaft. In G. Haase & K. Mannsfeld (Hrsg.), Naturraumeinheiten, Landschaftsfunktionen und Leitbilder am Beispiel von Sachsen. Forschungen zur deutschen Landeskunde, 250 (pp. 19–26).Flensburg: Academy Publication.Google Scholar
  65. Tress, B., Tress, G. & Fry, G. (2003). Potential and limitations of interdisciplinary and transdisciplinary landscape studies. In B. Tress, G. Tress, A. van der Valk & G. Fry (Eds.), Interdisciplinary and Transdisciplinary Landscape Studies: Potential and Limitations. Delta series, 2 (pp. 182–192). Wageningen: Alterra Green World Research.Google Scholar
  66. Troll, C. (1939). Luftbildplan und ökologische Bodenforschung (Aerial photography and ecological studies of the earth). Zeitschrift der Gesellschaft für Erdkunde, 241–298.Google Scholar
  67. Troll, C. (1966). Landschaftsökologie als geographisch-synoptische Naturbetrachtung. In: Ökologische Landschaftsforschung und vergleichende Hochgebirgsforschung. Erdkundliches Wissen, 11, 1–13.Google Scholar
  68. Turner, M.G. & Gardner, R.H. (Eds.) (1990). Quantitative Methods in Landscape Ecology.. Ecological Studies, 82Springer.New York:Google Scholar
  69. Wendorf, F., Schild, R. & Associates (Eds.) (2001). Holocene Settlement of the Egyptian Sahara. The Archaeology of Nabta Playa, 1. Kluwer/Plenum.New York:Google Scholar
  70. Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T. & Pniel, M. (1998). Overview of Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andreas Bolten
    • 1
  • Olaf Bubenzer
  • Frank Darius
  • Karin Kindermann
  1. 1.Department of GeographyUniversity of CologneCologneGermany

Personalised recommendations