VEGF in the Nervous System

  • Jeffrey M. Rosenstein
  • Janette M. Krum
  • Christiana Ruhrberg
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Vascular endothelial growth factor (VEGF, VEGFA) is critical for blood vessel growth in the developing and adult nervous system of vertebrates. Several recent studies demonstrate that VEGF also promotes neurogenesis, neuronal patterning, neuroprotection and glial growth. For example, VEGF treatment of cultured neurons enhances survival and neurite growth independently of blood vessels. Moreover, evidence is emerging that VEGF guides neuronal migration in the embryonic brain and supports axonal and arterial copatterning in the developing skin. Even though further work is needed to understand the various roles of VEGF in the nervous system and to distinguish direct neuronal effects from indirect, vessel-mediated effects, VEGF can be considered a promising tool to promote neuronal health and nerve repair.


Vascular Endothelial Growth Factor Neural Stem Cell Vascular Endothelial Growth Factor Receptor Vascular Endothelial Growth Factor Level Vascular Endothelial Growth Factor Isoforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruhrberg C. Growing and shaping the vascular tree: Multiple roles for VEGF. Bioessays 2003; 25(11):1052–1060.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18(1):4–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Dvorak HF, Brown LF, Detmar M et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146(5):1029–1039.PubMedGoogle Scholar
  4. 4.
    Ferrara N. VEGF: An update on biological and therapeutic aspects. Curr Opin Biotechnol 2000; 11(6):617–624.PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6):669–676.PubMedCrossRefGoogle Scholar
  6. 6.
    Fong GH, Rossant J, Gertsenstein M et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376(6535):66–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376(6535):62–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380(6573):435–439.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature Apr 4 1996; 380(6573):439–442.CrossRefGoogle Scholar
  10. 10.
    Kawasaki T, Kitsukawa T, Bekku Y et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999; 126(21):4895–4902.PubMedGoogle Scholar
  11. 11.
    Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue-beyond blood vessels. Exp Neurol 2004; 187(2):246–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: Implications for neurological disorders. Semin Cell Dev Biol 2002; 13(1):39–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Storkebaum E, Carmeliet P. VEGF: A critical player in neurodegeneration. J Clin Invest 2004; 113(1):14–18.PubMedGoogle Scholar
  14. 14.
    Ruhrberg C, Gerhardt H, Golding M et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 2002; 16(20):2684–2698.PubMedCrossRefGoogle Scholar
  15. 15.
    Haigh JJ, Morelli PI, Gerhardt H et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 2003; 262(2):225–241.PubMedCrossRefGoogle Scholar
  16. 16.
    Raab S, Beck H, Gaumann A et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 2004; 91(3):595–605.PubMedGoogle Scholar
  17. 17.
    Bar T. Patterns of vascularization in the developing cerebral cortex. Ciba Found Symp 1983; 100:20–36.PubMedGoogle Scholar
  18. 18.
    Risau W. Mechanisms of angiogenesis. Nature 1997; 386(6626):671–674.PubMedCrossRefGoogle Scholar
  19. 19.
    Breier G, Albrecht U, Sterrer S et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992; 114:521–532.PubMedGoogle Scholar
  20. 20.
    Gerhardt H, Golding M, Fruttiger M et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161(6):1163–1177.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenstein JM, Mani N, Silverman WF et al. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95(12):7086–7091.PubMedCrossRefGoogle Scholar
  22. 22.
    Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002; 110(4):589–604.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang ZG, Zhang L, Jiang Q et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106(7):829–838.PubMedCrossRefGoogle Scholar
  24. 24.
    Proescholdt MA, Heiss JD, Walbridge S et al. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol 1999; 58(6):613–627.PubMedGoogle Scholar
  25. 25.
    van Bruggen N, Thibodeaux H, Palmer JT et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999; 104(11):1613–1620.PubMedCrossRefGoogle Scholar
  26. 26.
    Hiratsuka S, Minowa O, Kuno J et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95(16):9349–9354.PubMedCrossRefGoogle Scholar
  27. 27.
    Kearney JB, Kappas NC, Ellerstrom C et al. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 2004; 103(12):4527–4535.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerhardt H, Ruhrberg C, Abramsson A et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 2004; 231(3):503–509.PubMedCrossRefGoogle Scholar
  29. 29.
    Kitsukawa T, Shimono A, Kawakami A et al. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 1995; 121(12):4309–4318.PubMedGoogle Scholar
  30. 30.
    Gu C, Rodriguez ER, Reimert DV et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 2003; 5(1):45–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Soker S, Takashima S, Miao HQ et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92(6):735–745.PubMedCrossRefGoogle Scholar
  32. 32.
    Lambrechts D, Storkebaum E, Morimoto M et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Gen 2003; 34(4):383–393.CrossRefGoogle Scholar
  33. 33.
    Oosthuyse B, Moons L, Storkebaum E et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. [comment]. Nat Gene 2001; 28(2):131–138.CrossRefGoogle Scholar
  34. 34.
    Sopher BL, Thomas Jr PS, LaFevre-Bernt MA et al. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 2004; 41(5):687–699.PubMedCrossRefGoogle Scholar
  35. 35.
    Storkebaum E, Lambrechts D, Dewerchin M et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005; 8(1):85–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosenstein JM, Mani N, Khaibullina A et al. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003; 23(35):11036–11044.PubMedGoogle Scholar
  37. 37.
    Silverman WF, Krum JM, Mani N et al. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 1999; 90(4):1529–1541.PubMedCrossRefGoogle Scholar
  38. 38.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. Neuroscience 1999; 19(14):5731–5740.PubMedGoogle Scholar
  39. 39.
    Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12(12):4243–4254.PubMedCrossRefGoogle Scholar
  40. 40.
    Jin KL, Mao XO, Nagayama T et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience 2000; 99(3):577–585.PubMedCrossRefGoogle Scholar
  41. 41.
    Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: Direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000; 97(18):10242–10247.PubMedCrossRefGoogle Scholar
  42. 42.
    Matsuzaki H, Tamatani M, Yamaguchi A et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J 2001; 15(7):1218–1220.PubMedGoogle Scholar
  43. 43.
    Svensson B, Peters M, Konig HG et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab 2002; 22(10):1170–1175.PubMedCrossRefGoogle Scholar
  44. 44.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res 1999; 846(2):219–228.PubMedCrossRefGoogle Scholar
  45. 45.
    Schratzberger P, Schratzberger G, Silver M et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000; 6(4):405–413.PubMedCrossRefGoogle Scholar
  46. 46.
    Mani N, Khaibullina A, Krum JM et al. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: Receptor mediation and signal transduction pathways. Exp Neurol 2005; 192:394–406.PubMedCrossRefGoogle Scholar
  47. 47.
    Eddleston M, Mucke L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 1993; 54(1):15–36.PubMedCrossRefGoogle Scholar
  48. 48.
    Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 1998; 154(1):57–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Khaibullina AA, Rosenstein JM, Krum JM. Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures. Brain Research. Dev Brain Res 2004; 148(1):59–68.CrossRefGoogle Scholar
  50. 50.
    Ogunshola OO, Antic A, Donoghue MJ et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 2002; 277(13):11410–11415.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang ZG, Tsang W, Zhang L et al. Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 2001; 21(5):541–549.PubMedCrossRefGoogle Scholar
  52. 52.
    Raper JA. Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 2000; 10(1):88–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Jin K, Zhu Y, Sun Y et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99(18):11946–11950.PubMedCrossRefGoogle Scholar
  54. 54.
    Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425(4):479–494.PubMedCrossRefGoogle Scholar
  55. 55.
    Louissaint Jr A, Rao S, Leventhal C et al. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 2002; 34(6):945–960.PubMedCrossRefGoogle Scholar
  56. 56.
    Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 2006; 9(3):331–339.PubMedCrossRefGoogle Scholar
  57. 57.
    Bagnard D, Vaillant C, Khuth ST et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 2001; 21(10):3332–334l.PubMedGoogle Scholar
  58. 58.
    Zhang H, Vutskits L, Pepper MS et al. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 2003; 163(6):1375–1384.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang K, Cepko CL. Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J Neurosci 1996; 16(19):6089–6099.PubMedGoogle Scholar
  60. 60.
    Robinson GS, Ju M, Shih SC et al. Nonvascular role for VEGF: VEGFR-1, 2 activity is critical for neural retinal development. FASEB J 2001; 15(7):1215–1217.PubMedGoogle Scholar
  61. 61.
    Gariano RF, Hu D, Helms J. Expression of angiogenesis-related genes during retinal development. Gene Expr Patterns 2006; 6(2):187–192.PubMedCrossRefGoogle Scholar
  62. 62.
    Hashimoto T, Zhang XM, Chen BY et al. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 2006; 133(11):2201–2210.PubMedCrossRefGoogle Scholar
  63. 63.
    Yourey PA, Gohari S, Su JL et al. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J Neurosci 2000; 20(18):6781–6788.PubMedGoogle Scholar
  64. 64.
    Wada T, Haigh JJ, Ema M et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 2006; 26(25):6803–6812.PubMedCrossRefGoogle Scholar
  65. 65.
    Schanzer A, Wachs FP, Wilhelm D et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 2004; 14(3):237–248.PubMedCrossRefGoogle Scholar
  66. 66.
    Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 2005; 19(9):1013–1021.PubMedCrossRefGoogle Scholar
  67. 67.
    Kolodkin AL, Ginty DD. Steering clear of semaphorins: Neuropilins sound the retreat. Neuron 1997; 19(6):1159–1162.PubMedCrossRefGoogle Scholar
  68. 68.
    Miao HQ, Soker S, Feiner L et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 1999; 146(1):233–242.PubMedCrossRefGoogle Scholar
  69. 69.
    Bagnard D, Lohrum M, Uziel D et al. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 1998; 125(24):5043–5053.PubMedGoogle Scholar
  70. 70.
    Carmeliet P. Blood vessels and nerves: Common signals, pathways and diseases. Nat Rev Genet 2003; 4(9):710–720.PubMedCrossRefGoogle Scholar
  71. 71.
    Kutcher ME, Klagsbrun M, Mamluk R. VEGF is required for the maintenance of dorsal root ganglia blood vessels but not neurons during development. FASEB J 2004; 18(15):1952–1954.PubMedGoogle Scholar
  72. 72.
    Vieira JM, Schwarz Q, Ruhrberg C. Selective requirements for neuropilin lignads in neurovascular development. Development 2007, (in press).Google Scholar
  73. 73.
    Schwarz Q, Gu C, Fujisawa H et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev 2004; 18(22):2822–2834.PubMedCrossRefGoogle Scholar
  74. 74.
    Bates D, Taylor GI, Minichiello J et al. Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 2003; 255(1):77–98.PubMedCrossRefGoogle Scholar
  75. 75.
    Torres-Vazquez J, Gitler AD, Fraser SD et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 2004; 7(1):117–123.PubMedCrossRefGoogle Scholar
  76. 76.
    Serini G, Valdembri D, Zanivan S et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003; 424(6947):391–397.PubMedCrossRefGoogle Scholar
  77. 77.
    Gu C, Yoshida Y, Livet J et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 2005; 307(5707):265–268.PubMedCrossRefGoogle Scholar
  78. 78.
    Mukouyama YS, Gerber HP, Ferrara N et al. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 2005; 132(5):941–952.PubMedCrossRefGoogle Scholar
  79. 79.
    Mukouyama YS, Shin D, Britsch S et al. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 2002; 109(6):693–705.PubMedCrossRefGoogle Scholar
  80. 80.
    Sun Y, Jin K, Xie L et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111(12):1843–1851.PubMedGoogle Scholar
  81. 81.
    Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 1998; 18(8):887–895.PubMedCrossRefGoogle Scholar
  82. 82.
    Krum JM, Khaibullina A. Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: Roles for VEGF in brain repair. Exp Neurol 2003; 181(2):241–257.PubMedCrossRefGoogle Scholar
  83. 83.
    Facchiano F, Fernandez E, Mancarella S et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 2002; 97(1):161–168.PubMedCrossRefGoogle Scholar
  84. 84.
    Widenfalk J, Lipson A, Jubran M et al. Vascular endothelial growth factor improves functional outcome and decreases secondarydegeneration in experimental spinal cord contusion injury. Neuroscience 2003; 120:951–960.PubMedCrossRefGoogle Scholar
  85. 85.
    Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anatomy 2000; 197 (Pt 4):591–605.CrossRefGoogle Scholar
  86. 86.
    Kalaria RN, Cohen DL, Premkumar DR et al. Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 1998; 62(1):101–105.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Jeffrey M. Rosenstein
    • 1
  • Janette M. Krum
    • 1
  • Christiana Ruhrberg
    • 2
  1. 1.Department of Anatomy and Cell BiologyThe George Washington University Medical CenterWashington, DCUSA
  2. 2.Institute of OphthalmologyUniversity College LondonLondonUK

Personalised recommendations