VEGF and Endothelial Guidance in Angiogenic Sprouting

  • Holger Gerhardt
Part of the Molecular Biology Intelligence Unit book series (MBIU)


The cellular actions of VEGF need to be coordinated to guide vascular patterning during sprouting angiogenesis. Individual endothelial tip cells lead and guide the blood vessel sprout, while neighbouring stalk cells proliferate and form the vascular lumen. Recent studies illustrate how endothelial DLL4/NOTCH signalling, stimulated by VEGF, regulates the sprouting response by limiting tip cell formation in the stalk. The spatial distribution of VEGF, in turn, regulates the shape of the ensuing sprout by directing tip cell migration and determining stalk cell proliferation.


Notch Signaling Retinal Vasculature Stalk Cell Vascular Plexus Filopodium Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Risau W. Mechanisms of angiogenesis. Nature 1997; 386:671–674.PubMedCrossRefGoogle Scholar
  2. 2.
    Ruhrberg C. Growing and shaping the vascular tree: Multiple roles for VEGF. Bioessays 2003; 25(11):1052–1060.PubMedCrossRefGoogle Scholar
  3. 3.
    Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 1999; 284(5420):1635–1639.PubMedCrossRefGoogle Scholar
  4. 4.
    Ghabrial AS, Krasnow MA. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 2006; 441(7094):746–749.PubMedCrossRefGoogle Scholar
  5. 5.
    Ribeiro C, Ebner A, Affolter M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev Cell 2002; 2(5):677–683.PubMedCrossRefGoogle Scholar
  6. 6.
    Bar T, Wolff JR. The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z Zellforsch 1972; 133:231–248.PubMedCrossRefGoogle Scholar
  7. 7.
    Mato M, Ookawara S. Ultrastructural observation on the tips of growing vascular cords in the rat cerebral cortex. Experientia 1982; 38(4):499–501.PubMedCrossRefGoogle Scholar
  8. 8.
    Marin-Padilla M. Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J Comp Neurol 1985; 241(2):237–249.PubMedCrossRefGoogle Scholar
  9. 9.
    Leung DW, Cachianes G, Kuang WJ et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246(4935):1306–1309.PubMedCrossRefGoogle Scholar
  10. 10.
    Gerhardt H, Golding M, Fruttiger M et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161(6):1163–1177.PubMedCrossRefGoogle Scholar
  11. 11.
    Ruhrberg C, Gerhardt H, Golding M et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 2002; 16(20):2684–2698.PubMedCrossRefGoogle Scholar
  12. 12.
    Mato M, Ookawara S, Namiki T. Studies on the vasculogenesis in rat cerebral cortex. Anat Rec 1989; 224(3):355–364.PubMedCrossRefGoogle Scholar
  13. 13.
    Flamme I, Baranowski A, Risau W. A new model of vasculogenesis and angiogenesis in vitro as compared with vascular growth in the avian area vasculosa. Anat Rec 1993; 237(1):49–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurz H, Gartner T, Eggli PS et al. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 1996; 173(1):133–147.PubMedCrossRefGoogle Scholar
  15. 15.
    Breier G, Risau W. The role of vascular endothelial growth factor in blood vessel formation. Trends in Cell Biol 1996; 6:454–456.CrossRefGoogle Scholar
  16. 16.
    Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14(1):53–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Fruttiger M. Development of the retinal vasculature. Angiogenesis 2007; 10(2):77–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Uemura A, Kusuhara S, Katsuta H et al. Angiogenesis in the mouse retina: A model system for experimental manipulation. Exp Cell Res 2006; 312(5):676–683.PubMedCrossRefGoogle Scholar
  19. 19.
    Fruttiger M, Calver AR, Kruger WH et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 1996; 17(6):1117–1131.PubMedCrossRefGoogle Scholar
  20. 20.
    Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 2002; 43(11):3500–3510.PubMedGoogle Scholar
  21. 21.
    West H, Richardson WD, Fruttiger M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development 2005; 132(8):1855–1862.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein GW. Endothelial cell-astrocyte interactions: A cellular model of the blood-brain barrier. Ann NY Acad Sci 1988; 529:31–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1):41–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Provis JM, Leech J, Diaz CM et al. Development of the human retinal vasculature: Cellular relations and VEGF expression. Exp Eye Res 1997; 65:555–568.PubMedCrossRefGoogle Scholar
  25. 25.
    Stone J, Itin A, Alon T et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growtn factor (VEGF) expression by neuroglia. J Neurosci 1995; 15:4738–4747.PubMedGoogle Scholar
  26. 26.
    Kearney JB, Kappas NC, Ellerstrom C et al. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 2004; 103(12):4527–4535.PubMedCrossRefGoogle Scholar
  27. 27.
    Claxton S, Fruttiger M. Oxygen modifies artery differentiation and network morphogenesis in the retinal vasculature. Dev Dyn 2005; 233(3):822–828.PubMedCrossRefGoogle Scholar
  28. 28.
    Zeng G, Taylor SM, McColm JR et al. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 2007; 109(4): 1345–1352.PubMedCrossRefGoogle Scholar
  29. 29.
    Kearney JB, Ambler CA, Monaco KA et al. Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002; 99(7):2397–2407.PubMedCrossRefGoogle Scholar
  30. 30.
    McCue S, Dajnowiec D, Xu F et al. Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro. Circ Res 2006; 98(7):939–946.PubMedCrossRefGoogle Scholar
  31. 31.
    Shutter JR, Scully S, Fan W et al. D114, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000; 14(11):1313–1318.PubMedGoogle Scholar
  32. 32.
    Claxton S, Fruttiger M. Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 2004; 5(1):123–127.PubMedCrossRefGoogle Scholar
  33. 33.
    Gale NW, Dominguez MG, Noguera I et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004; 101(45):15949–15954.PubMedCrossRefGoogle Scholar
  34. 34.
    Krebs LT, Shutter JR, Tanigaki K et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 2004; 18(20):2469–2473.PubMedCrossRefGoogle Scholar
  35. 35.
    Duarte A, Hirashima M, Benedito R et al. Dosage-sensitive requirement for mouse D114 in artery development. Genes Dev 2004; 18(20):2474–2478.PubMedCrossRefGoogle Scholar
  36. 36.
    Sainson RC, Aoto J, Nakatsu MN et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 2005; 19(8): 1027–1029.PubMedGoogle Scholar
  37. 37.
    Hellstrom M, Phng LK, Hofmann JJ et al. DU4 signalling through Notchl regulates formation of tip cells during angiogenesis. Nature 2007; 445(7129):776–780.PubMedCrossRefGoogle Scholar
  38. 38.
    Leslie JD, Ariza-McNaughton L, Bermange AL et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 2007; 134(5):839–844.PubMedCrossRefGoogle Scholar
  39. 39.
    Lobov IB, Renard RA, Papadopoulos N et al. Delta-like ligand 4 (DU4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 2007; 104(9):3219–3224.PubMedCrossRefGoogle Scholar
  40. 40.
    Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 2007; 445(7129):781–784.PubMedCrossRefGoogle Scholar
  41. 41.
    Suchting S, Freitas C, le Noble F et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 2007; 104(9):3225–3230.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu ZJ, Shirakawa T, Li Y et al. Regulation of Notchl and D114 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 2003; 23(1):14–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Berezovska O, Jack C, McLean P et al. Rapid Notchl nuclear translocation after ligand binding depends on presenilin-associated gamma-secretase activity. Ann N Y Acad Sci 2000; 920:223–226.PubMedCrossRefGoogle Scholar
  44. 44.
    De Strooper B, Annaert W, Cupers P et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999; 398(6727):518–522.PubMedCrossRefGoogle Scholar
  45. 45.
    Ehebauer M, Hayward P, Martinez-Arias A. Notch signaling pathway. Sci STKE 2006; 2006(364):cm7.Google Scholar
  46. 46.
    Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194(3):237–255.PubMedCrossRefGoogle Scholar
  47. 47.
    Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of D114 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444(7122): 1032–1037.PubMedCrossRefGoogle Scholar
  48. 48.
    Ridgway J, Zhang G, Wu Y et al. Inhibition of D114 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444(7122): 1083–1087.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Holger Gerhardt
    • 1
  1. 1.Vascular Biology Laboratory, Cancer Research UKLondon Research Institute, Lincoln’s Inn Fields LaboratoriesLondonUK

Personalised recommendations