Role of VEGF in Organogenesis

  • Jody J. Haigh
Part of the Molecular Biology Intelligence Unit book series (MBIU)


The cardiovascular system, consisting of the heart, blood vessels and hematopoietic cells, is the first organ system to develop in vertebrates and is essential for providing oxygen and nutrients to the embryo and adult organs. Work done predominantly using the mouse and zebrafish as model systems has demonstrated that Vascular Endothelial Growth Factor (VEGF, also known as VEGFA) and its receptors KDR (FLK1/VEGFR2), FLT1 (VEGFR1), NRP1 and NRP2 play essential roles in many different aspects of cardiovascular development, including endothelial cell differentiation, migration and survival as well as heart formation and hematopoiesis. This review will summarize the approaches taken and conclusions reached in dissecting the role of VEGF signalling in vivo during the development of the early cardiovasculature and other organ systems. The VEGF-mediated assembly of a functional vasculature is also a prerequisite for the proper formation of other organs and for tissue homeostasis, because blood vessels deliver oxygen and nutrients and vascular endothelium provides inductive signals to other tissues. Particular emphasis will therefore be placed in this review on the cellular interactions between vascular endothelium and developing organ systems, in addition to a discussion of the role of VEGF in modulating the behavior of nonendothelial cell populations.


Vascular Endothelial Growth Factor Amyotrophic Lateral Sclerosis Vascular Endothelial Growth Factor Gene Primitive Streak Endocardial Cushion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miquerol L, Gertsenstein M, Harpal K et al. Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 1999; 212(2):307–322.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs 2005; (94):209–231.PubMedGoogle Scholar
  3. 3.
    Ema M, Taya S, Yokotani N et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94(9):4273–4278.PubMedCrossRefGoogle Scholar
  4. 4.
    Forsythe JA, Jiang BH, Iyer NV et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16(9):4604–4613.PubMedGoogle Scholar
  5. 5.
    Pages G, Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene—a concert of activating factors. Cardiovasc Res 2005; 65(3):564–573.PubMedCrossRefGoogle Scholar
  6. 6.
    Fujita M, Mason RJ, Cool C et al. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol 2002; 93(6):2162–2170.PubMedGoogle Scholar
  7. 7.
    Harada S, Nagy JA, Sullivan KA et al. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J Clin Invest 1994; 93(6):2490–2496.PubMedCrossRefGoogle Scholar
  8. 8.
    Ruhrberg C. Growing and shaping the vascular tree: Multiple roles for VEGF. Bioessays 2003; 25(11):1052–1060.PubMedCrossRefGoogle Scholar
  9. 9.
    Ng YS, Rohan R, Sunday ME et al. Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 2001; 220(2):112–121.PubMedCrossRefGoogle Scholar
  10. 10.
    Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380(6573):435–439.PubMedCrossRefGoogle Scholar
  11. 11.
    Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380(6573):439–442.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerber HP, Hillan KJ, Ryan AM et al. VEGF is required for growth and survival in neonatal mice. Development 1999; 126(6):1149–1159.PubMedGoogle Scholar
  13. 13.
    Carmeliet P, Ng YS, Nuyens D et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 1999; 5(5):495–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Stalmans I, Ng YS, Rohan R et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002; 109(3):327–336.PubMedGoogle Scholar
  15. 15.
    Stalmans I, Lambrechts D, De Smet F et al. VEGF: A modifier of the del22q11 (DiGeorge) syndrome? Nat Med 2003; 9(2):173–182.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruhrberg C, Gerhardt H, Golding M et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 2002; 16(20):2684–2698.PubMedCrossRefGoogle Scholar
  17. 17.
    Gerhardt H, Golding M, Fruttiger M et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161(6):1163–1177.PubMedCrossRefGoogle Scholar
  18. 18.
    Maes C, Carmeliet P, Moermans K et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 2002; 111(1–2):61–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Zelzer E, McLean W, Ng YS et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 2002; 129(8):1893–1904.PubMedGoogle Scholar
  20. 20.
    Mattot V, Moons L, Lupu F et al. Loss of the VEGF(164) and VEGF(188) isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J Am Soc Nephrol 2002; 13(6):1548–1560.PubMedCrossRefGoogle Scholar
  21. 21.
    Maes C, Stockmans I, Moermans K et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 2004; 113(2):188–199.PubMedGoogle Scholar
  22. 22.
    Gustafsson T, Ameln H, Fischer H et al. VEGF-A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. J Appl Physiol 2005; 98(6):2137–2146.PubMedCrossRefGoogle Scholar
  23. 23.
    Bates DO, Cui TG, Doughty JM et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 2002; 62(14):4123–4131.PubMedGoogle Scholar
  24. 24.
    Yang SP, Kwon BO, Gho YS et al. Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. J Neurochem 2005; 93(1): 118–127.PubMedCrossRefGoogle Scholar
  25. 25.
    Risau W. Embryonic angiogenesis factors. Pharmacol Ther 1991; 51(3):371–376.PubMedCrossRefGoogle Scholar
  26. 26.
    Sato TN, Lougna S. Vasculogenesis and Angiogenesis. In: Tarn JRaPPL, ed. Mouse Development: Patterning, Morphogenesis, and Organogenesis. Academic Press, 2002:211–228.Google Scholar
  27. 27.
    Speck N, Peeters M, Dzierzak E. Development of the vertebrate hematopoietic system. In: Tarn JRaPPL, ed. Mouse Development: Patterning, Morphogenesis, and Organogenesis. Academic Press, 2002:191–206.Google Scholar
  28. 28.
    Harvey RP. Molecular determinants of cardiac development and congenital disease. In: Tarn JRaPPL, ed. Mouse Development: Patterning, Morphogenesis, and Organogenesis. Academic Press, 2002:332–358.Google Scholar
  29. 29.
    Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376(6535):62–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Shalaby F, Ho J, Stanford WL et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89(6):981–990.PubMedCrossRefGoogle Scholar
  31. 31.
    Schuh AC, Faloon P, Hu QL et al. In vitro hematopoietic and endothelial potential of flk-1 (-/-) embryonic stem cells and embryos. Proc Natl Acad Sci USA 1999; 96(5):2159–2164.PubMedCrossRefGoogle Scholar
  32. 32.
    Fong GH, Rossant J, Gertsenstein M et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376(6535):66–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Fong GH, Zhang L, Bryce DM et al. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999; 126(13):3015–3025.PubMedGoogle Scholar
  34. 34.
    Hiratsuka S, Minowa O, Kuno J et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95(16):9349–9354.PubMedCrossRefGoogle Scholar
  35. 35.
    Hiratsuka S, Nakao K, Nakamura K et al. Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is important for vasculogenesis and angiogenesis in mice. Mol Cell Biol 2005; 25(1):346–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Hiratsuka S, Kataoka Y, Nakao K et al. Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol Cell Biol 2005; 25(1):355–363.PubMedCrossRefGoogle Scholar
  37. 37.
    Kearney JB, Kappas NC, Ellerstrom C et al. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 2004; 103(12):4527–4535.PubMedCrossRefGoogle Scholar
  38. 38.
    Autiero M, Waltenberger J, Communi D et al. Role of P1GF in the intra-and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9(7):936–943.PubMedCrossRefGoogle Scholar
  39. 39.
    Fujisawa H. From the discovery of neuropilin to the determination of its adhesion sites. Adv Exp Med Biol 2002; 515:1–12.PubMedGoogle Scholar
  40. 40.
    Soker S, Takashima S, Miao HQ et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92(6):735–745.PubMedCrossRefGoogle Scholar
  41. 41.
    Kawasaki T, Kitsukawa T, Bekku Y et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999; 126(21):4895–4902.PubMedGoogle Scholar
  42. 42.
    Takashima S, Kitakaze M, Asakura M et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 2002; 99(6):3657–3662.PubMedCrossRefGoogle Scholar
  43. 43.
    Minamisawa S, Gu Y, Ross Jr J et al. A post-transcriptional compensatory pathway in heterozygous ventricular myosin light chain 2-deficient mice results in lack of gene dosage effect during normal cardiac growth or hypertrophy. J Biol Chem 1999; 274(15):10066–10070.PubMedCrossRefGoogle Scholar
  44. 44.
    Giordano FJ, Gerber HP, Williams SP et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 2001; 98(10):5780–5785.PubMedCrossRefGoogle Scholar
  45. 45.
    Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000; 127(18):3941–3946.PubMedGoogle Scholar
  46. 46.
    Dor Y, Camenisch TD, Itin A et al. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 2001; 128(9):1531–1538.PubMedGoogle Scholar
  47. 47.
    Gitler AD, Lu MM, Epstein JA. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 2004; 7(1):107–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Gu C, Rodriguez ER, Reimert DV et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 2003; 5(1):45–57.PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi N, Seko Y, Noiri E et al. Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 1999; 84(10):1194–1202.PubMedGoogle Scholar
  50. 50.
    Motoike T, Markham DW, Rossant J et al. Evidence for novel fate of Flk1+ progenitor: Contribution to muscle lineage. Genesis 2003; 35(3):153–159.PubMedCrossRefGoogle Scholar
  51. 51.
    Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125(4):725–732.PubMedGoogle Scholar
  52. 52.
    Yamashita J, Itoh H, Hirashima M et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408(6808):92–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Ema M, Rossant J. Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med 2003; 13(6):254–259.PubMedCrossRefGoogle Scholar
  54. 54.
    Ishida A, Murray J, Saito Y et al. Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 2001; 188(3):359–368.PubMedCrossRefGoogle Scholar
  55. 55.
    Gerber HP, Malik AK, Solar GP et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 4l7(6892):954–958.CrossRefGoogle Scholar
  56. 56.
    Haruta H, Nagata Y, Todokoro K. Role of Flk-1 in mouse hematopoietic stem cells. FEBS Lett 2001; 507(1):45–48.PubMedCrossRefGoogle Scholar
  57. 57.
    Hattori K, Dias S, Heissig B et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193(9):1005–1014.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohm JE, Gabrilovich DI, Sempowski GD et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003; 101(12):4878–4886.PubMedCrossRefGoogle Scholar
  59. 59.
    Belteki G, Haigh J, Kabacs N et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cremediated recombination and tetracycline induction. Nucleic Acids Res 2005; 33(5):e51.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsumoto K, Yoshitomi H, Rossant J et al. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001; 294(5542):559–563.PubMedCrossRefGoogle Scholar
  61. 61.
    Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001; 294(5542):564–567.PubMedCrossRefGoogle Scholar
  62. 62.
    Ankoma-Sey V, Matli M, Chang KB et al. Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene 1998; 17(1):115–121.PubMedCrossRefGoogle Scholar
  63. 63.
    Wong AK, Alfert M, Castrillon DH et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc Natl Acad Sci USA 2001; 98(13):7481–7486.PubMedCrossRefGoogle Scholar
  64. 64.
    LeCouter J, Moritz DR, Li B et al. Angiogenesis-independent endothelial protection of liver: Role of VEGFR-1. Science 2003; 299(5608):890–893.PubMedCrossRefGoogle Scholar
  65. 65.
    Inoue M, Hager JH, Ferrara N et al. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 2002; 1(2):193–202.PubMedCrossRefGoogle Scholar
  66. 66.
    Lammert E, Gu G, McLaughlin M et al. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 2003; 13(12):1070–1074.PubMedCrossRefGoogle Scholar
  67. 67.
    Compernolle V, Brusselmans K, Acker T et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002; 8(7):702–710.PubMedGoogle Scholar
  68. 68.
    Oosthuyse B, Moons L, Storkebaum E et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001; 28(2):131–138.PubMedCrossRefGoogle Scholar
  69. 69.
    Zeng X, Wert SE, Federici R et al. VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 1998; 211(3):215–227.PubMedCrossRefGoogle Scholar
  70. 70.
    Le Cras TD, Spitzmiller RE, Albertine KH et al. VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Physiol Lung Cell Mol Physiol 2004; 287(1):L134–142.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee CG, Link H, Baluk P et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004; 10(10):1095–1103.PubMedCrossRefGoogle Scholar
  72. 72.
    Robert B, Zhao X, Abrahamson DR. Coexpression of neuropilin-1, Flk1, and VEGF(164) in developing and mature mouse kidney glomeruli. Am J Physiol Renal Physiol 2000; 279(2):F275–282.PubMedGoogle Scholar
  73. 73.
    Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 2003; 111(5):707–716.PubMedGoogle Scholar
  74. 74.
    Eremina V, Quaggin SE. The role of VEGF-A in glomerular development and function. Curr Opin Nephrol Hypertens 2004; 13(1):9–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Germani A, Di Carlo A, Mangoni A et al. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 2003; 163(4):1417–1428.PubMedGoogle Scholar
  76. 76.
    van Weel V, Deckers MM, Grimbergen JM et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res 2004; 95(1):58–66.PubMedCrossRefGoogle Scholar
  77. 77.
    Gerber HP, Vu TH, Ryan AM et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5(6):623–628.PubMedCrossRefGoogle Scholar
  78. 78.
    Haigh JJ, Gerber HP, Ferrara N et al. Conditional inactivation of VEGF-A in areas of collagen2al expression results in embryonic lethality in the heterozygous state. Development 2000; 127(7):1445–1453.PubMedGoogle Scholar
  79. 79.
    Zelzer E, Mamluk R, Ferrara N et al. VEGFA is necessary for chondrocyte survival during bone development. Development 2004; 131(9):2161–2171.PubMedCrossRefGoogle Scholar
  80. 80.
    Weninger W, Uthman A, Pammer J et al. Vascular endothelial growth factor production in normal epidermis and in benign and malignant epithelial skin tumors. Lab Invest 1996; 75(5):647–657.PubMedGoogle Scholar
  81. 81.
    Rossiter H, Barresi C, Pammer J et al. Loss of vascular endothelial growth factor a activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res 2004; 64(10):3508–3516.PubMedCrossRefGoogle Scholar
  82. 82.
    Larcher F, Murillas R, Bolontrade M et al. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 1998; 17(3):303–311.PubMedCrossRefGoogle Scholar
  83. 83.
    Xia YP, Li B, Hylton D et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 2003; 102(1):161–168.PubMedCrossRefGoogle Scholar
  84. 84.
    Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 2005; 19(9):1013–1021.PubMedCrossRefGoogle Scholar
  85. 85.
    Carmeliet P. Blood vessels and nerves: Common signals, pathways and diseases. Nat Rev Genet 2003; 4(9):710–720.PubMedCrossRefGoogle Scholar
  86. 86.
    Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 2000; 197 (Pt 4):591–605.PubMedCrossRefGoogle Scholar
  87. 87.
    Jin K, Zhu Y, Sun Y et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99(18):11946–11950.PubMedCrossRefGoogle Scholar
  88. 88.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999; 19(14):5731–5740.PubMedGoogle Scholar
  89. 89.
    Matsuzaki H, Tamatani M, Yamaguchi A et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J 2001; 15(7):1218–1220.PubMedGoogle Scholar
  90. 90.
    Damert A, Miquerol L, Gertsenstein M et al. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 2002; 129(8):1881–1892.PubMedGoogle Scholar
  91. 91.
    Haigh JJ, Morelli PI, Gerhardt H et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 2003; 262(2):225–241.PubMedCrossRefGoogle Scholar
  92. 92.
    Raab S, Beck H, Gaumann A et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 2004; 91(3):595–605.PubMedGoogle Scholar
  93. 93.
    Schwarz Q, Gu C, Fujisawa H et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev 2004; 18(22):2822–2834.PubMedCrossRefGoogle Scholar
  94. 94.
    Wada T, Haigh JJ, Ema M et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 2006; 26(25):6803–6812.PubMedCrossRefGoogle Scholar
  95. 95.
    Cao L, Jiao X, Zuzga DS et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 2004; 36(8):827–835.PubMedCrossRefGoogle Scholar
  96. 96.
    Lambrechts D, Storkebaum E, Carmeliet P. VEGF: Necessary to prevent motoneuron degeneration, sufficient to treat ALS? Trends Mol Med 2004; 10(6):275–282.PubMedCrossRefGoogle Scholar
  97. 97.
    Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: Implications for neurological disorders. Semin Cell Dev Biol 2002; 13(1):39–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Azzouz M, Ralph GS, Storkebaum E et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004; 429(6990):413–417.PubMedCrossRefGoogle Scholar
  99. 99.
    Storkebaum E, Lambrechts D, Dewerchin M et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005; 8(1):85–92.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Jody J. Haigh
    • 1
  1. 1.Vascular Cell Biology Unit, Department for Molecular Biomedical Research (DMBR)Flanders Interuniversity Institute for Biotechnology (VIB)/Ghent UniversityGhent (Zwijnaarde)Belgium

Personalised recommendations