Cytotoxicity and Genotoxicity of Carbon Nanomaterials

  • Amanda M. Schrand
  • Jay Johnson
  • Liming Dai
  • Saber M. Hussain
  • John J. Schlager
  • Lin Zhu
  • Yiling Hong
  • Eiji Ōsawa
Part of the Nanostructure Science and Technology book series (NST)


With the recent development in nanoscience and nanotechnology, there is a pressing demand for assessment of the potential hazards of carbon nanomaterials to humans and other biological systems. This chapter summarizes our recent in vitro cytotoxicity and genotoxicity studies on carbon nanomaterials with an emphasis on carbon nanotubes and nanodiamonds. The studies summarized in this chapter demonstrate that carbon nanomaterials exhibit material-specific and cell-specific cytotoxicity with the general trend for biocompatibility: nanodiamonds > carbon black powders > multiwalled carbon nanotubes > single-walled carbon nanotubes, with macrophages being much more sensitive to the cytotoxicity of these carbon nanomaterials than neuroblastoma cells. However, the cytotoxicity to carbon nanomaterials could be tuned by functionalizing the nanomaterials with different surface groups. Multiwalled carbon nanotubes and nanodiamonds, albeit to a less extend, can accumulate in mouse embryonic stem (ES) cells to cause DNA damage through reactive oxygen species (ROS) generation and to increase the mutation frequency in mouse ES cells. These results point out the great need for careful scrutiny of the toxicity of nanomaterials at the molecular level, or genotoxicity, even for those materials like multiwalled carbon nanotubes and nanodiamonds that have been demonstrated to cause limited or no toxicity at the cellular level.


Reactive Oxygen Species Carbon Nanotubes Embryonic Stem Cell Reactive Oxygen Species Generation Neuroblastoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbondanzo SJ, Gadi I, Stewart CL (1993) Derivation of embryonic stem cell lines. Methods Enzymol 225:803–823CrossRefGoogle Scholar
  2. Allison AC, Harington JS, Birbeck M (1966) An examination of the cytotoxic effects of silica on macrophages. J Exp Med 124:141–154CrossRefGoogle Scholar
  3. Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, Santavirta S (1996) Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials 17:807–812CrossRefGoogle Scholar
  4. Bakowicz-Mitura K, Bartosz G, Mitura S (2007) Influence of diamond powder particles on human gene expression. Surf Coat Technol 201:6131–6135CrossRefGoogle Scholar
  5. Bartek J, Lukas J (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122CrossRefGoogle Scholar
  6. Bhakat KK, Mokkapati SK, Boldogh I, Hazra TK, Mitra S (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol Cell Biol 26:1654–1665CrossRefGoogle Scholar
  7. Bondar V, Pozdnyakova I, Puzyr A (2004) Applications of nanodiamonds for separation and purification of proteins. Phys Sol State 46(4):758–760CrossRefGoogle Scholar
  8. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Particle Fibre Toxicol 3(11):1–35Google Scholar
  9. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160(2):121–126CrossRefGoogle Scholar
  10. Castell JV, Gómez-Lechón MJ (eds) (1997) In vitro methods in pharmaceutical research. Academic Press, San Diego, CAGoogle Scholar
  11. Cervantes RB, Stringer JR, Shao C, Tischfield JA, and Stambrook PJ (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 99:3586–3590CrossRefGoogle Scholar
  12. Cheung HS, Story MT, McCarty DJ (1984) Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells. Arthritis Rheum 27:668–674CrossRefGoogle Scholar
  13. Chlopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Beguin F (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44:1106–1111CrossRefGoogle Scholar
  14. Clemedson C, Barile F, Chesne C, Cottin M, Curren R, Exkwall B, Ferro M, Gomez-Lechon M, Imai K, Janus J, Kemp R, Kerszman G, Kjellstrand P, Lavrijsen K, Logemann P, McFarlane-Abdulla E, Roguet R, Segner H, Thusvander A, Walum E, Ekwall, B (2000) MEIC evaluation of acute systemic toxicity. Part VII. Prediction of human toxicity by results from testing of the first 30 reference chemicals with 27 further in vitro assays. ATLA 28:159–200Google Scholar
  15. Dai L (2004) Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer-Verlag, New YorkGoogle Scholar
  16. Dai L (ed) (2006) Carbon nanotechnology: recent developments in chemistry, physics, materials science and device applications. Elsevier, AmsterdamGoogle Scholar
  17. Dion I, Roques X, Baquey C, Baudet E, Basse Cathalinat B, More N (1993) Hemocompatibility of diamond-like carbon coating. Biomed Mater Eng 3:51–55Google Scholar
  18. Doherty M, Whicher JT, Dieppe PA (1983) Activation of the alternative pathway of complement by monosodium urate monohydrate crystals and other inflammatory particles. Ann Rheum Dis 42:285–291CrossRefGoogle Scholar
  19. Dresselhaus MS, Dresselhaus G, Eklund P (1996) Science of fullerenes and carbon nanotubes. Academic, San Diego, CAGoogle Scholar
  20. Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer B, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J (2002) Methods of in vitro toxicology. Food Chem Toxicol 40:193–226CrossRefGoogle Scholar
  21. Engle SJ, Stockelman MG, Chen J, Boivin G, Yum MN, Davies PM, Ying MY, Sahota A, Simmonds HA, Stambrook PJ, Tischfield JA (1996) Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc Natl Acad Sci USA 93:5307–5312CrossRefGoogle Scholar
  22. Erdemir A, Bindal C, Fenske GR, Zuiker C, Krauss AR, Gruen DM (1996) Friction and wear properties of smooth diamond films grown in fullerene + argon plasmas. Diamond Relat Mater 5:923–931CrossRefGoogle Scholar
  23. Erdemir A, Halter M, Fenske GR, Zuiker C, Csencsits R, Krauss AR, Gruen DM (1997) Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol Trans 40:667–675CrossRefGoogle Scholar
  24. Farber JL, Kyle ME, Coleman JB (1990) Mechanisms of cell injury by activated oxygen species. J Lab Invest 62:670–679Google Scholar
  25. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093CrossRefGoogle Scholar
  26. Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100–1105CrossRefGoogle Scholar
  27. Garibaldi S, Brunelli C, BavastrelloV, GhigliottiG, Nicolini C (2006) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17:391–397CrossRefGoogle Scholar
  28. Goldstein AN (ed) (1997) Handbook of nanophase materials. Marcel Dekker, Inc., New YorkGoogle Scholar
  29. Halliwell B, Gutteridge J, Cross CJ (1992) Free radicals, antioxidants and human disease: where are we now? J Lab Clin Med 119:598–620Google Scholar
  30. Harris PJF (2001) Carbon nanotubes and related structures – new materials for the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  31. Hedenborg M, Klockars M (1989) Quartz dust-induced production of reactive oxygen metabolites by human granulocytes. Lung 167:23–32CrossRefGoogle Scholar
  32. Higson FK, Jones OT (1984) Oxygen radical production by horse and pig neutrophils induced by a range of crystals. J Rheumatol 11:735–740Google Scholar
  33. Hill JW, Evans MK (2006) Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res. 34:1620–1632CrossRefGoogle Scholar
  34. Hirsch A (1994) The chemistry of the fullerenes. Thieme, StuttgartCrossRefGoogle Scholar
  35. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374CrossRefGoogle Scholar
  36. Hong YL, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101:14443–14448CrossRefGoogle Scholar
  37. Hong YL, Cervantes RB, Stambrook PJ (2006) DNA damage response and mutagenesis in mouse embryonic stem cells. Methods Mol Biol 329:313–326Google Scholar
  38. Huang LCL, Chang H (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20:5879–5884CrossRefGoogle Scholar
  39. Huang TS, Tzeng Y, Liu Y, Chen Y, Walker K, Guntupalli R, Liu C (2004) Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diamond Rel Mat 13:1098–1102CrossRefGoogle Scholar
  40. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033.CrossRefGoogle Scholar
  41. Hussain S and Frazier J (2002) Cellular toxicity of hydrazine in primary hepatocytes. Tox Sci 69:424–432CrossRefGoogle Scholar
  42. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  43. Ito K, Keiyo Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M, Naka K, Azuma M, Miyamoto K, Hosokawa K, Ikeda Y, Mak TW, Suda T, Hirao A (2007) Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol 178:103–110Google Scholar
  44. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383CrossRefGoogle Scholar
  45. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100CrossRefGoogle Scholar
  46. Khabashesku VN, Margrave JL, Barrera EV (2005) Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diamond Rel Mat 14:859–866CrossRefGoogle Scholar
  47. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  48. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii A, Vul' A, Osawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730CrossRefGoogle Scholar
  49. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171CrossRefGoogle Scholar
  50. Lin Z, Chang DW, Dai L, Hong YL (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells 7(12):3592–3597 Google Scholar
  51. Loft S, Poulsen H (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184CrossRefGoogle Scholar
  52. Luhr HG (1958) Comparative studies on phagocytosis of coal powders of various carbonification grades, also of quartz and diamond powders in tissue cultures. Arch Gewerbepath 16:355–374CrossRefGoogle Scholar
  53. Magrez A, Kasas S, Salicio V, Pasquier N, Seo J, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:6:1121–1125CrossRefGoogle Scholar
  54. Marsh H (1989) Introduction to carbon science. Butterworths, LondonGoogle Scholar
  55. Marx J (2003) Mutant stem cells may seed cancer. Science 301:1308–1310CrossRefGoogle Scholar
  56. McCauley TG, Corrigan TD, Krauss AR, Auciello O, Zhou D, Gruen DM, Temple D, Chang RPH, English S, Nemanich RJ (1998) Electron emission properties of Si field emitter arrays coated with nanocrystalline diamond from fullerene precursors. Mater Res Soc (MRS) Symp Proc 498:227–232Google Scholar
  57. Meyyappan M (2005) Carbon nanotubes: science and applications. CRC Press, Boca Raton, FLGoogle Scholar
  58. Monteiro-Riviere N, Inman A (2006) Challenges for assessing carbon nanomaterial toxicity to the skin.Carbon 44:1070–1078Google Scholar
  59. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  60. Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 10:1637–1652Google Scholar
  61. Nordsletten L, Hogasen AK, Konttinen YT, Santavirta S, Aspenberg P, Aasen AO (1996) Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. Biomaterials 17:1521–1527CrossRefGoogle Scholar
  62. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204CrossRefGoogle Scholar
  63. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642CrossRefGoogle Scholar
  64. Poh W, Loh K (2004) Biosensing properties of diamond and carbon nanotubes. Langmuir 20:5484–5492CrossRefGoogle Scholar
  65. Preece N, Timbrell J (1989) Investigation of lipid peroxidation induced by hydrazine compounds in vivo in the rat. Pharmacol Toxicol 64:282–285CrossRefGoogle Scholar
  66. Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Tox Lett 168:58–74CrossRefGoogle Scholar
  67. Puzyr AP, Neshumayev DA, Tarskikh SV, Makarskaya GV, Dolmatov VYu, Bondar VS (2004) Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro. Diamond Rel Mat 13:2020–2023CrossRefGoogle Scholar
  68. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefGoogle Scholar
  69. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Bio Chem 275:9390–9390CrossRefGoogle Scholar
  70. Sato Y, Shibata KI, Kataoka H, Ogino SI, Bunshi F, Yokoyama A, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Hatakeyama R, Watari F, Tohji K (2005) Strict preparation and evaulation of water-soluble hat-stacked carbon nanofibers for biomedical application and their high biocompatibility: influence of nanofiber surface functional groups on cytotoxicity. Mol BioSyst 1:142–145CrossRefGoogle Scholar
  71. Sayes C, Liang F, Hudson J, Mendez J, Guo W, Beach J, Moore V, Doyle C, West J, Billups W, Ausman K, Colvin V (2005). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):35–142Google Scholar
  72. Schmidt JA, Oliver CN, Lepe-Zuniga JL, Green I, Gery I (1984) Silica-stimulated monocytes release fibroblast proliferation factors identical to interleukin 1. A potential role for interleukin 1 in the pathogenesis of silicosis. J Clin Invest 73:1462–1472CrossRefGoogle Scholar
  73. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007a) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Rel Mat (In Press)Google Scholar
  74. Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, and Dai L (2007b) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7CrossRefGoogle Scholar
  75. Schrand AM, Huang H, Qu L, Schlager JJ, Osawa E, Hussain SM, Dai L (2007c) In vitrobiocompatibility of diamond nanoparticles with cells. SAMPE J (Submitted for publication)Google Scholar
  76. Schrand AM, Kathy Szcublewski K, Schlager JJ, Dai L, Hussain SM (2007d) Interaction and biocompatibility of multi-walled carbon nanotubes in PC-12 Cells. J Neuroprotection Neuroregeneration 3(2):115–121Google Scholar
  77. Shenderova O, Zhirnov V, Brenner D (2002) Carbon nanostructures. Crit Rev Solid State Mat Sci 27:227–356CrossRefGoogle Scholar
  78. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246CrossRefGoogle Scholar
  79. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI,Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol-Lung Cell Mol Physiol 289(5):L698–L708CrossRefGoogle Scholar
  80. Siesjo B, Agardh C, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211Google Scholar
  81. Soto K, Carrasco A, Powell T, Garza K, Murr L (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169CrossRefGoogle Scholar
  82. Taylor R (ed) (1995) The chemistry of fullerenes. World Scientific, SingaporeGoogle Scholar
  83. Tse RL, Phelps P (1970) Polymorphonuclear leukocyte motility in vitro. V. Release of chemotactic activity following phagocytosis of calcium pyrophosphate crystals, diamond dust, and urate crystals. J Lab Clin Med 76:403–415Google Scholar
  84. Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430CrossRefGoogle Scholar
  85. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeidch F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131CrossRefGoogle Scholar
  86. Yang W, Auciello O, Butler J, Cai W, Carlisle J, Gerbi J, Gruen D, Knickerbocker T, Lasseter T, Russell J, Smith L, Hamers R (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mat 1:253–257CrossRefGoogle Scholar
  87. Yu B (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162Google Scholar
  88. Yu S, Kang M, Chang H, Chen K, Yu Y (2005). Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127: 17604–17605CrossRefGoogle Scholar
  89. Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26:1786–1794CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amanda M. Schrand
    • 1
  • Jay Johnson
    • 1
  • Liming Dai
    • 1
  • Saber M. Hussain
    • 2
  • John J. Schlager
    • 2
  • Lin Zhu
    • 3
  • Yiling Hong
    • 3
  • Eiji Ōsawa
    • 4
  1. 1.Department of Chemical and Materials Engineering, School of Engineering and UDRIUniversity of DaytonDaytonUSA
  2. 2.Applied Biotechnology Branch, Human Effectiveness DirectorateAir Force Research LaboratoryWright-Patterson AFBUSA
  3. 3.Department of BiologyUniversity of DaytonDaytonUSA
  4. 4.NanoCarbon Research Institute, Ltd.ChibaJapan

Personalised recommendations