Unexpected Reactions by In Vivo Applications of PEGylated Liposomes

  • Tatsuhiro Ishida
  • Hiroshi Kiwada
Part of the Nanostructure Science and Technology book series (NST)


PEGylated liposome, a liposome coated with polyethylene glycol (PEG), is understood to be biologically inert and, therefore, a suitable vehicle for in vivo applications. The most successful example is the doxorubicin-containing PEGylated liposome, known under the commercial name Doxil/Caelyx for cancer therapy. However, several researchers have found evidence that unexpected immune responses occur even to such polymer-coated liposomes after intravenous injection not only in animals but also in humans. An understanding of the immunological and pathological factors that control the pharmacokinetic and biological behavior of PEGylated liposomes is crucial for the design and safety of a system with optimal therapeutic and/or diagnostic performance. In this study, the interaction of PEGylated liposomes within the biological milieu following parenteral administration is discussed.


Hypersensitivity Reaction Complement Activation Liposomal Formulation Acute Reaction Acute Side Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. James L. McDonald for his helpful advice in writing the English manuscript.


  1. Alberts DS, Garcia DJ (1997) Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 54:30–35Google Scholar
  2. Allen C, Dos Santos N, Gallagher R, Chiu GN, Shu Y, Li WM, Johnstone SA, Janoff AS, Mayer LD, Webb MS, Bally MB (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22:225–250Google Scholar
  3. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36Google Scholar
  4. Alving CR (1992) Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim Biophys Acta 1113:307–322Google Scholar
  5. Bakker-Woudenberg IA, Lokerse AF, ten Kate MT, Storm G (1992) Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta 1138:318–326Google Scholar
  6. Beringue V, Demoy M, Lasmezas CI, Gouritin B, Weingarten C, Deslys JP, Andreux JP, Couvreur P, Dormont D (2000) Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J Pathol 190:495–502Google Scholar
  7. Blume G, Cevc G (1990) Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1029:91–97Google Scholar
  8. Boerman OC, Laverman P, Oyen WJ, Corstens FH, Storm G (2000) Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res 39:461–475Google Scholar
  9. Bohnsack JF, Brown EJ (1986) The role of the spleen in resistance to infection. Annu Rev Med 37:49–59Google Scholar
  10. Bourgeois H, Ferru A, Lortholary A, Delozier T, Boisdron-Celle M, Abadie-Lacourtoisie S, Joly F, Chieze S, Chabrun V, Gamelin E, Tourani JM (2006) Phase I-II study of pegylated liposomal doxorubicin combined with weekly paclitaxel as first-line treatment in patients with metastatic breast cancer. Am J Clin Oncol 29:267–275Google Scholar
  11. Bradley AJ, Devine DV (1998) The complement system in liposome clearance: can complement deposition be inhibited? Adv Drug Deliv Rev 32:19–29Google Scholar
  12. Brouwers AH, De Jong DJ, Dams ET, Oyen WJ, Boerman OC, Laverman P, Naber TH, Storm G, Corstens FH (2000) Tc-99m-PEG-Liposomes for the evaluation of colitis in Crohn’s disease. J Drug Target 8:225–233Google Scholar
  13. Caraglia M, Addeo R, Costanzo R, Montella L, Faiola V, Marra M, Abbruzzese A, Palmieri G, Budillon A, Grillone F, Venuta S, Tagliaferri P, Del Prete S (2006) Phase II study of temozolomide plus pegylated liposomal doxorubicin in the treatment of brain metastases from solid tumours. Cancer Chemother Pharmacol 57:34–39Google Scholar
  14. Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR, Muggia FM (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14:1430–1437Google Scholar
  15. Charrois GJ, Allen TM (2003) Multiple injections of pegylated liposomal Doxorubicin: pharmacokinetics and therapeutic activity. J Pharmacol Exp Ther 306:1058–1067Google Scholar
  16. Cheng TL, Wu PY, Wu MF, Chern JW, Roffler SR (1999) Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjug Chem 10:520–528Google Scholar
  17. Chidiac T, Budd GT, Pelley R, Sandstrom K, McLain D, Elson P, Crownover R, Marks K, Muschler G, Joyce M, Zehr R, Bukowski R (2000) Phase II trial of liposomal doxorubicin (Doxil) in advanced soft tissue sarcomas. Invest New Drugs 18:253–259Google Scholar
  18. Coleman RE, Biganzoli L, Canney P, Dirix L, Mauriac L, Chollet P, Batter V, Ngalula-Kabanga E, Dittrich C, Piccart M (2006) A randomised phase II study of two different schedules of pegylated liposomal doxorubicin in metastatic breast cancer (EORTC-10993). Eur J Cancer 42:882–887Google Scholar
  19. Daemen T, Hofstede G, Ten Kate MT, Bakker-Woudenberg IA, Scherphof GL (1995) Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer 61:716–721Google Scholar
  20. Daemen T, Regts J, Meesters M, Ten Kate MT, Bakker-Woudenberg IA, Scherphof GL (1997) Toxicity of doxorubicin entrapped within long-circulating liposomes. J Control Release 44:1–9Google Scholar
  21. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, Corstens FH, Boerman OC (2000a) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079Google Scholar
  22. Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, Buijs WC, Bakker H, van der Meer JW, Corstens FH (2000b) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41:622–630Google Scholar
  23. Devine DV, Marjan JM (1997) The role of immunoproteins in the survival of liposomes in the circulation. Crit Rev Ther Drug Carrier Syst 14:105–131Google Scholar
  24. Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Ann Rev Mat Sci 26:365–394Google Scholar
  25. English JC, 3rd, Toney R, Patterson JW (2003) Intertriginous epidermal dysmaturation from pegylated liposomal doxorubicin. J Cutan Pathol 30:591–595Google Scholar
  26. Escobar PF, Markman M, Zanotti K, Webster K, Belinson J (2003) Phase 2 trial of pegylated liposomal doxorubicin in advanced endometrial cancer. J Cancer Res Clin Oncol 129:651–654Google Scholar
  27. Forssen EA, Male-Brune R, Adler-Moore JP, Lee MJ, Schmidt PG, Krasieva TB, Shimizu S, Tromberg BJ (1996) Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 56:2066–2075Google Scholar
  28. Gabizon A (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19:424–436Google Scholar
  29. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992Google Scholar
  30. Gabizon A, Muggia FM (1998) Initial clinical evaluation of pegylated liposomal doxorubicin in solid tumors. In: Woodle MC, Storm G (eds) Long circulating liposomes: old drugs, new therapeutics. Springer-Verlag, Berlin, p 165Google Scholar
  31. Gibbs DD, Pyle L, Allen M, Vaughan M, Webb A, Johnston SR, Gore ME (2002) A phase I dose-finding study of a combination of pegylated liposomal doxorubicin (Doxil), carboplatin and paclitaxel in ovarian cancer. Br J Cancer 86:1379–1384Google Scholar
  32. Gnad-Vogt SU, Hofheinz RD, Saussele S, Kreil S, Willer A, Willeke F, Pilz L, Hehlmann R, Hochhaus A (2005) Pegylated liposomal doxorubicin and mitomycin C in combination with infusional 5-fluorouracil and sodium folinic acid in the treatment of advanced gastric cancer: results of a phase II trial. Anticancer Drugs 16:435–440Google Scholar
  33. Goebel FD, Goldstein D, Goos M, Jablonowski H, Stewart JS (1996) Efficacy and safety of Stealth liposomal doxorubicin in AIDS-related Kaposi’s sarcoma, The International SL-DOX Study Group. Br J Cancer 73:989–994Google Scholar
  34. Gordinier ME, Dizon DS, Fleming EL, Weitzen S, Schwartz J, Parker LP, Granai CO (2006) Elevated body mass index does not increase the risk of palmar-plantar erythrodysesthesia in patients receiving pegylated liposomal doxorubicin. Gynecol Oncol 103:72–74Google Scholar
  35. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322Google Scholar
  36. Grunaug M, Bogner JR, Loch O, Goebel FD (1998) Liposomal doxorubicin in pulmonary Kaposi’s sarcoma: improved survival as compared to patients without liposomal doxorubicin. Eur J Med Res 3:13–19Google Scholar
  37. Halm U, Etzrodt G, Schiefke I, Schmidt F, Witzigmann H, Mossner J, Berr F (2000) A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol 11:113–114Google Scholar
  38. Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1327:181–192Google Scholar
  39. Huang JY, Wu CH, Shih IH, Lai PC (2004) Complications mimicking lupus flare-up in a uremic patient undergoing pegylated liposomal doxorubicin therapy for cervical cancer. Anticancer Drugs 15:239–241Google Scholar
  40. Hubert A, Lyass O, Pode D, Gabizon A (2000) Doxil (Caelyx): an exploratory study with pharmacokinetics in patients with hormone-refractory prostate cancer. Anticancer Drugs 11: 123–127Google Scholar
  41. Hussein MA, Wood L, Hsi E, Srkalovic G, Karam M, Elson P, Bukowski RM (2002) A Phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 95:2160–2168Google Scholar
  42. Ishida T, Harashima H, Kiwada H (2001) Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab 2:397–409Google Scholar
  43. Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22:197–224Google Scholar
  44. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H (2003a) Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release 88:35–42Google Scholar
  45. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H (2003b) Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 255:167–174Google Scholar
  46. Ishida T, Harada M, Wang XY, Ichihara M, Irimura K, Kiwada H (2005) Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 105: 305–317Google Scholar
  47. Ishida T, Atobe K, Wang X, Kiwada H (2006a) Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release 115:251–258Google Scholar
  48. Ishida T, Ichihara M, Wang X, Kiwada H (2006b) Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 115:243–250Google Scholar
  49. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006c) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112:15–25Google Scholar
  50. Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6: 559–593Google Scholar
  51. Johnston SR, Gore ME (2001) Caelyx: phase II studies in ovarian cancer. Eur J Cancer 37:S8–14Google Scholar
  52. Katsaros D, Oletti MV, Rigault de la Longrais IA, Ferrero A, Celano A, Fracchioli S, Donadio M, Passera R, Cattel L, Bumma C (2005) Clinical and pharmacokinetic phase II study of pegylated liposomal doxorubicin and vinorelbine in heavily pretreated recurrent ovarian carcinoma. Ann Oncol 16:300–306Google Scholar
  53. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237Google Scholar
  54. Koch G, Lok BD, van Oudenaren A, Benner R (1982) The capacity and mechanism of bone marrow antibody formation by thymus-independent antigens. J Immunol 128:1497–1501Google Scholar
  55. Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SC, Skarlatos J, Beroukas K, Bizakis JG, Retalis G, Karkavitsas N, Helidonis ES (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17:3512–3521Google Scholar
  56. Krown SE, Northfelt DW, Osoba D, Stewart JS (2004) Use of liposomal anthracyclines in Kaposi’s sarcoma. Semin Oncol 31:36–52Google Scholar
  57. Laing RB, Milne LJ, Leen CL, Malcolm GP, Steers AJ (1994) Anaphylactic reactions to liposomal amphotericin. Lancet 344:682Google Scholar
  58. Laverman P, Boerman OC, Oyen WJ, Dams ET, Storm G, Corstens FH (1999) Liposomes for scintigraphic detection of infection and inflammation. Adv Drug Deliv Rev 37:225–235Google Scholar
  59. Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, Corstens FH, Storm G (2001) Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 298:607–612Google Scholar
  60. Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polymer Sci 20:1043–1079Google Scholar
  61. Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, Gabizon A (2000) Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol 136:1475–1480Google Scholar
  62. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–241Google Scholar
  63. Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, Brufman G, Gabizon A (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89:1037–1047Google Scholar
  64. Markman M, Kennedy A, Webster K, Peterson G, Kulp B, Belinson J (2000) Phase 2 trial of liposomal doxorubicin (40 mg/m(2)) in platinum/paclitaxel-refractory ovarian and fallopian tube cancers and primary carcinoma of the peritoneum. Gynecol Oncol 78:369–372Google Scholar
  65. Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617–629Google Scholar
  66. Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M (1992) Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta 1128:44–49Google Scholar
  67. Mirchandani D, Hochster H, Hamilton A, Liebes L, Yee H, Curtin JP, Lee S, Sorich J, Dellenbaugh C and Muggia FM (2005) Phase I study of combined pegylated liposomal doxorubicin with protracted daily topotecan for ovarian cancer. Clin Cancer Res 11:5912–5919Google Scholar
  68. Muggia FM, Hainsworth JD, Jeffers S, Miller P, Groshen S, Tan M, Roman L, Uziely B, Muderspach L, Garcia A, Burnett A, Greco FA, Morrow CP, Paradiso LJ, Liang LJ (1997) Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15:987–993Google Scholar
  69. Needham D, McIntosh TJ, Lasic DD (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1108:40–48Google Scholar
  70. Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD (1996) Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 36:55–63Google Scholar
  71. Northfelt DW, Dezube BJ, Thommes JA, Levine R, Von Roenn JH, Dosik GM, Rios A, Krown SE, DuMond C, Mamelok RD (1997) Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. J Clin Oncol 15: 653–659Google Scholar
  72. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449Google Scholar
  73. Oku N (1999) Delivery of contrast agents for positron emission tomography imaging by liposomes. Adv Drug Deliv Rev 37:53–61Google Scholar
  74. Orditura M, Quaglia F, Morgillo F, Martinelli E, Lieto E, De Rosa G, Comunale D, Diadema MR, Ciardiello F, Catalano G, De Vita F (2004) Pegylated liposomal doxorubicin: pharmacologic and clinical evidence of potent antitumor activity with reduced anthracycline-induced cardiotoxicity (review). Oncol Rep 12:549–556Google Scholar
  75. Overmoyer B, Silverman P, Holder LW, Tripathy D, Henderson IC (2005) Pegylated liposomal doxorubicin and cyclophosphamide as first-line therapy for patients with metastatic or recurrent breast cancer. Clin Breast Cancer 6:150–157Google Scholar
  76. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C, Martin FJ (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88: 11460–11464Google Scholar
  77. Patel HM (1992) Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit Rev Ther Drug Carrier Syst 9:39–90Google Scholar
  78. Phillips NC (1989) Kupffer cells and liver metastasis. Optimization and limitation of activation of tumoricidal activity. Cancer Metastasis Rev 8:231–252Google Scholar
  79. Poh SB, Bai LY, Chen PM (2005) Pegylated liposomal doxorubicin-based combination chemotherapy as salvage treatment in patients with advanced hepatocellular carcinoma. Am J Clin Oncol 28:540–546Google Scholar
  80. Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8 Suppl 2:17–24Google Scholar
  81. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, Henderson R, Berry G, Gabizon A (2000) Pegylated liposomal doxorubicin (Doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11:1029–1033Google Scholar
  82. Sharpe M, Easthope SE, Keating GM, Lamb HM (2002) Polyethylene glycol-liposomal doxorubicin: a review of its use in the management of solid and haematological malignancies and AIDS-related Kaposi’s sarcoma. Drugs 62:2089–2126Google Scholar
  83. Szebeni J (2005a) Complement activation-related pseudoallergy caused by amphiphilic drug carriers: the role of lipoproteins. Curr Drug Deliv 2:443–449Google Scholar
  84. Szebeni J (2005b) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–121Google Scholar
  85. Szebeni J, Fontana JL, Wassef NM, Mongan PD, Morse DS, Dobbins DE, Stahl GL, Bunger R, Alving CR (1999) Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 99: 2302–2309Google Scholar
  86. Szebeni J, Baranyi L, Savay S, Bodo M, Morse DS, Basta M, Stahl GL, Bunger R, Alving CR (2000) Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol Heart Circ Physiol 279:H1319–1328Google Scholar
  87. Szebeni J, Baranyi L, Savay S, Milosevits J, Bunger R, Laverman P, Metselaar JM, Storm G, Chanan-Khan A, Liebes L, Muggia FM, Cohen R, Barenholz Y, Alving CR (2002) Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res 12:165–172Google Scholar
  88. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195:11–20Google Scholar
  89. Tsai NM, Cheng TL, Roffler SR (2001) Sensitive measurement of polyethylene glycol-modified proteins. Biotechniques 30:396–402Google Scholar
  90. Uziely B, Jeffers S, Isacson R, Kutsch K, Wei-Tsao D, Yehoshua Z, Libson E, Muggia FM, Gabizon A (1995) Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 13:1777–1785Google Scholar
  91. Vaage J, Donovan D, Mayhew E, Abra R, Huang A (1993) Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes. Cancer 72: 3671–3675Google Scholar
  92. Vaage J, Donovan D, Uster P, Working P (1997) Tumour uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br J Cancer 75:482–486Google Scholar
  93. van Rooijen N, van Nieuwmegen R (1980) Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun 9:243–256Google Scholar
  94. Verhaar-Langereis M, Karakus A, van Eijkeren M, Voest E, Witteveen E (2006) Phase II study of the combination of pegylated liposomal doxorubicin and topotecan in platinum-resistant ovarian cancer. Int J Gynecol Cancer 16:65–70Google Scholar
  95. Wang X, Ishida T, Kiwada H (2007) Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 119:236–244Google Scholar
  96. Waterhouse DN, Tardi PG, Mayer LD, Bally MB (2001) A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 24:903–920Google Scholar
  97. Woodle MC (1998) Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 32:139–152Google Scholar
  98. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113: 171–199Google Scholar
  99. Wu NZ, Da D, Rudoll TL, Needham D, Whorton AR, Dewhirst MW (1993) Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res 53:3765–3770Google Scholar
  100. Yan X, Scherphof GL, Kamps JA (2005) Liposome opsonization. J Liposome Res 15:109–139Google Scholar
  101. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756Google Scholar
  102. Zandvoort A, Timens W (2002) The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol 130:4–11Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health BiosciencesThe University of TokushimaTokushimaJapan

Personalised recommendations