Biomedical Applications of Nanoparticles

Part of the Nanostructure Science and Technology book series (NST)


Nanomaterials hold immense promise for significantly improving existing diagnosis, therapy and designing novel approaches to treat a variety of human ailments. While some of the applications of nanotechnology have been translated into clinical settings, many more potential uses of nanomedicines have been demonstrated in experimental systems. Since a variety of materials can be nanosized, the scope of nanomedicine is also large and may even become larger. At the same time, the impact of nanomaterials on cellular and animal models will need to be carefully evaluated under both acute and chronic exposures at toxicological and pharmacological doses. It is extremely important to evaluate the basic issues such as the fate of nanomaterials in biological systems, and how the cells and tissues react to the exposure of nanomaterials in developing nanomedicines. This chapter will cover some of these promises and future directions.


Iron Oxide Nanoparticles Polymeric Micelle Iron Oxide Particle Gold Nanoshells Nanosized Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Dr. Linda Knight, Professor of Diagnostic Imaging at Temple University School of Medicine, for critical reading and helpful suggestions with the manuscript.


  1. 1.
    Bosi S, Da Ros T, Spalluto G, Prato, M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–23.CrossRefGoogle Scholar
  2. 2.
    Brannon-Peppas L, Blanchette, JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659.CrossRefGoogle Scholar
  3. 3.
    Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504.CrossRefGoogle Scholar
  4. 4.
    Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184.CrossRefGoogle Scholar
  5. 5.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976.CrossRefGoogle Scholar
  6. 6.
    Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353.CrossRefGoogle Scholar
  7. 7.
    Lacerda L, Bianco A, Prato M, Kostarelos, K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470.CrossRefGoogle Scholar
  8. 8.
    Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330.CrossRefGoogle Scholar
  9. 9.
    Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648.CrossRefGoogle Scholar
  10. 10.
    Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485.CrossRefGoogle Scholar
  11. 11.
    Freitas RA Jr (1999) Nanomedicine, volume I: basic capabilities, 1st edn. Landes Bioscience, Georgetown, TX.Google Scholar
  12. 12.
    Freitas RA Jr (2003) Nanomedicine, voulme iia: biocompatibility, 1st edn. Landes Bioscience, Georgetown, TX.Google Scholar
  13. 13.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839.CrossRefGoogle Scholar
  14. 14.
    Jensen AW, Maru BS, Zhang X, Mohanty DK, Fahlman BD, Tomalia DA (2005) Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Lett 5:1171–1173.CrossRefGoogle Scholar
  15. 15.
    Dresselhaus MS, Dresselhaus G, Eklund, PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, CA.Google Scholar
  16. 16.
    Tabata Y, Murakami Y, Ikada Y (1997) Antitumor effect of poly(ethylene glycol)modified fullerene. Fullerene Sci Technol 5:989–1007.CrossRefGoogle Scholar
  17. 17.
    Tsao N, Kanakamma PP, Luh T-Y, Chou C-K, Lei H-Y (1999) Inhibition of escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemother 43:2273–2277.Google Scholar
  18. 18.
    Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389.CrossRefGoogle Scholar
  19. 19.
    Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37:1191–1202.CrossRefGoogle Scholar
  20. 20.
    Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK-F, Luh T-Y, Choi DW, Lin T-S (1997) Carboxyfullerenes as neuroprotective agents. PNAS 94:9434–9439.CrossRefGoogle Scholar
  21. 21.
    Fumelli C, Marconi A, Salvioli S, Straface E, Malorni W, Offidani AM, Pellicciari R, Schettini G, Giannetti A, Monti D, Franceschi C, Pincelli C (2000) Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J Invest Dermatol 115:835–841.CrossRefGoogle Scholar
  22. 22.
    Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5, 2578–2585.CrossRefGoogle Scholar
  23. 23.
    Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The Lancet Oncol 7:657–667.CrossRefGoogle Scholar
  24. 24.
    Tagmatarchis N, Shinohara H (2001) Fullerenes in medicinal chemistry and their biological applications. Mini Rev Med Chem 1:339–348.CrossRefGoogle Scholar
  25. 25.
    Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ (2005) A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508–12509.CrossRefGoogle Scholar
  26. 26.
    Toth E, Bolskar RD, Borel A, Gonzalez G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127:799–805.CrossRefGoogle Scholar
  27. 27.
    Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem phys chem 5:1084–1104.CrossRefGoogle Scholar
  28. 28.
    Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2:253–259.CrossRefGoogle Scholar
  29. 29.
    Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412.CrossRefGoogle Scholar
  30. 30.
    Ziegler KJ (2005) Developing implantable optical biosensors. Trends Biotechnol 23:440–444.CrossRefGoogle Scholar
  31. 31.
    Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes Nat Mater 4:86–92.Google Scholar
  32. 32.
    Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 102: 11600–11605.CrossRefGoogle Scholar
  33. 33.
    Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76.CrossRefGoogle Scholar
  34. 34.
    Courty S, Bouzigues C, Luccardini C, Ehrensperger M, Bonneau S, Dahan M, James I (2006) Tracking individual proteins in living cells using single quantum dot imaging. In “Methods in Enzymology”, Academic Press.Google Scholar
  35. 35.
    Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga, S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19:1181–1191.CrossRefGoogle Scholar
  36. 36.
    Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protocols 1:73–79.CrossRefGoogle Scholar
  37. 37.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021.CrossRefGoogle Scholar
  38. 38.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160.CrossRefGoogle Scholar
  39. 39.
    Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12.CrossRefGoogle Scholar
  40. 40.
    Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, Part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50.CrossRefGoogle Scholar
  41. 41.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.CrossRefGoogle Scholar
  42. 42.
    Levi N, Hantgan R, Lively M, Carroll D, Prasad G (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol 4:14.CrossRefGoogle Scholar
  43. 43.
    Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212.CrossRefGoogle Scholar
  44. 44.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172.CrossRefGoogle Scholar
  45. 45.
    Sun R, Dittrich J, Le-Huu M, Mueller MM, Bedke J, Kartenbeck J, Lehmann WD, Krueger R, Bock M, Huss R, Seliger C, Grone HJ, Misselwitz B, Semmler W, Kiessling F (2005) Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 40:504–513.CrossRefGoogle Scholar
  46. 46.
    Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173.Google Scholar
  47. 47.
    Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman, RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103: 18882–18886.CrossRefGoogle Scholar
  48. 48.
    Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129:216–222.CrossRefGoogle Scholar
  49. 49.
    Shi Kam NW, Jessop TC, Wender PA, Dai H. (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 126:6850–6851.CrossRefGoogle Scholar
  50. 50.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668.CrossRefGoogle Scholar
  51. 51.
    Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 56:307–311.CrossRefGoogle Scholar
  52. 52.
    Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362.CrossRefGoogle Scholar
  53. 53.
    O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil(R)) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449.CrossRefGoogle Scholar
  54. 54.
    Moreno-Aspitia A, Perez EA (2005) Nanoparticle albumin-bound paclitaxel (ABI-007): a newer taxane alternative in breast cancer. Future Oncol 1:755–762.CrossRefGoogle Scholar
  55. 55.
    Pathak P, Prasad GL, Meziani MJ, Joudeh AA, Sun, YP (2007) Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir 23:2674–2679.CrossRefGoogle Scholar
  56. 56.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40.Google Scholar
  57. 57.
    Raj NKK, Sharma CP (2003) Oral insulin – a perspective. J Biomater Appl 17:183–196.CrossRefGoogle Scholar
  58. 58.
    Higaki M, Kameyama M, Udagawa M, Ueno Y, Yamaguchi Y, Igarashi R, Ishihara T, Mizushima Y (2006) Transdermal delivery of CaCO3-nanoparticles containing insulin. Diabetes Technol Ther 8:369–374.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysiologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations