Safety and Efficacy of Nano/Micro Materials

  • Xiaohong Wei
  • Yong-kyu Lee
  • Kang Moo Huh
  • Sungwon Kim
  • Kinam Park
Part of the Nanostructure Science and Technology book series (NST)


Nano/micro materials have been used in various applications, and drug delivery is one of the areas where nano/micro particles have made differences. Nano/micro particulate delivery systems can be divided into different categories based on several parameters, such as the nature of nanomaterials (inorganic and organic), biodegradability, hydrophilicity, structures, and processing method. Most of the nano/micro materials in drug delivery have been used without careful considerations of potential toxicity and safety issues. The size, surface area, chemistry, solubility, and shape of nano/micro materials all play significant roles in toxicity. It is time to consider potential problems that may result from the unguided use of nano/micro materials. This chapter deals with potential sources of toxicity in the development of various drug delivery systems.


TiO2 Nanoparticles Supercritical Fluid Biodegradable Polymer Polymer Micelle Protein Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jones R (2004) The future of nanotechnology. Phys World 17:25–29Google Scholar
  2. 2.
    Gogotsi Y (2003) How safe are nanotubes and other nanofilaments? Mater Res Innov 7:192–194Google Scholar
  3. 3.
    Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnology 2:12Google Scholar
  4. 4.
    Robichaud CO, Tanzil D, Weilenmann U, Wiesner MR (2005) Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39: 8985–8994Google Scholar
  5. 5.
    IRGC (2006) Survey on nanotechnology governance. International Risk Governance Council, Geneva, SwitzerlandGoogle Scholar
  6. 6.
    Munshia D, Kurianb P, Bartlettc RV, Lakhtakia A (2007) A map of the nanoworld: sizing up the science, politics, and business of the infinitesima. Futures 39:432–452Google Scholar
  7. 7.
    Giles J (2004) Size matters when it comes to safety, report warns. Nature 430:599Google Scholar
  8. 8.
    Maynard A (2006) Nanotechnology: assessing the risks. Nanotoday 1:22–33Google Scholar
  9. 9.
    Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958Google Scholar
  10. 10.
    Bilati U, Allemann E, Doelker E (2005) Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm 59:375–388Google Scholar
  11. 11.
    Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221Google Scholar
  12. 12.
    Diwan M, Park TG (2001) Pegylation enhances protein stability during encapsulation in PLGA microspheres. J Control Release 73:233–244Google Scholar
  13. 13.
    Diwan M, Park TG (2003) Stabilization of recombinant interferon-alpha by pegylation for encapsulation in PLGA microspheres. Int J Pharm 252:111–122Google Scholar
  14. 14.
    Fernandes AI, Gregoriadis G (2001) The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics. Int J Pharm 217: 215–224Google Scholar
  15. 15.
    Gregoriadis G, Fernandes A, Mital M, McCormack B (2000) Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics. Cell Mol Life Sci 57:1964–1969Google Scholar
  16. 16.
    Cleland JL, Jones AJ (1996) Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm Res 13:1464–1475Google Scholar
  17. 17.
    Carrasquillo KG, Stanley AM, Aponte-Carro JC, De Jesus P, Costantino HR, Bosques CJ, Griebenow K (2001) Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J Control Release 76:199–208Google Scholar
  18. 18.
    Carrasquillo KG, Carro JC, Alejandro A, Toro DD, Griebenow K (2001) Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation. J Pharm Pharmacol 53:115–120Google Scholar
  19. 19.
    Stevenson CL (2000) Characterization of protein and peptide stability and solubility in non-aqueous solvents. Curr Pharm Biotechnol 1:165–182Google Scholar
  20. 20.
    Stevenson CL, Tan MM (2000) Solution stability of salmon calcitonin at high concentration for delivery in an implantable system. J Pept Res 55:129–139Google Scholar
  21. 21.
    Yoo HS, Choi HK, Park TG (2001) Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles. J Pharm Sci 90:194–201Google Scholar
  22. 22.
    Huyghues-Despointes BM, Qu X, Tsai J, Scholtz JM (2006) Terminal ion pairs stabilize the second beta-hairpin of the B1 domain of protein G. Proteins 63:1005–1017Google Scholar
  23. 23.
    Bilati U, Allemann E, Doelker E (2005) Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 6:E594–604Google Scholar
  24. 24.
    Jen A, Merkle HP (2001) Diamonds in the rough: Protein crystals from a formulation perspective. Pharm Res 18:1483–1488Google Scholar
  25. 25.
    Elkordy AA, Forbes RT, Barry BW (2002) Integrity of crystalline lysozyme exceeds that of a spray-dried form. Int J Pharm 247:79–90Google Scholar
  26. 26.
    Elkordy AA, Forbes RT, Barry BW (2004) Stability of crystallised and spray-dried lysozyme. Int J Pharm 278:209–219Google Scholar
  27. 27.
    Lee MJ, Kwon JH, Shin JS, Kim CW (2005) Microcrystallization of alpha-lactalbumin.J Cryst Growth 282:434–437Google Scholar
  28. 28.
    Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R198–R206Google Scholar
  29. 29.
    Pisanic TR, 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–2581Google Scholar
  30. 30.
    Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90Google Scholar
  31. 31.
    Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542Google Scholar
  32. 32.
    Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185Google Scholar
  33. 33.
    Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402Google Scholar
  34. 34.
    Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104Google Scholar
  35. 35.
    Zhang FF, Wan Q, Li CX, Wang XL, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2004) Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles. Anal Bioanal Chem 380:637–642Google Scholar
  36. 36.
    Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73: 4988–4993Google Scholar
  37. 37.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554Google Scholar
  38. 38.
    Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102:11539–11544Google Scholar
  39. 39.
    Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278Google Scholar
  40. 40.
    Chang JS, Chang KL, Hwang DF, Kong ZL (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068Google Scholar
  41. 41.
    Lin W, Huang YW, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259Google Scholar
  42. 42.
    Smith TJ, Pearson PA, Blandford DL, Brown JD, Goins KA, Hollins JL, Schmeisser ET, Glavinos P, Baldwin LB, Ashton P (1992) Intravitreal sustained-release ganciclovir. Arch Ophthalmol 110:255–258Google Scholar
  43. 43.
    Driot JY, Novack GD, Rittenhouse KD, Milazzo C, Pearson PA (2004) Ocular pharmacokinetics of fluocinolone acetonide after Retisert intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther 20:269–275Google Scholar
  44. 44.
    Rahimy MH, Peyman GA, Chin SY, Golshani R, Aras C, Borhani H, Thompson H (1994) Polysulfone capillary fiber for intraocular drug delivery: in vitro and in vivo evaluations. J Drug Target 2:289–298Google Scholar
  45. 45.
    Kabanov AV (2006) Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 58:1597–1621Google Scholar
  46. 46.
    Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY (2005) Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 101:259–271Google Scholar
  47. 47.
    Rihova B (2007) Biocompatibility and immunocompatibility of water-soluble polymers based on HPMA. Compos Part B-Eng 38:386–397Google Scholar
  48. 48.
    Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F (2006) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58:1182–1202Google Scholar
  49. 49.
    Leong KW, Brott BC, Langer R (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res 19:941–955Google Scholar
  50. 50.
    Leong KW, D’Amore PD, Marletta M, Langer R (1986) Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 20:51–64Google Scholar
  51. 51.
    Heller J (2005) Ocular delivery using poly(ortho esters). Adv Drug Deliv Rev 57:2053–2062Google Scholar
  52. 52.
    Heller J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Einmahl S, Rothen-Weinhold A, Gurny R (2000) Poly(ortho esters) – their development and some recent applications. Eur J Pharm Biopharm 50:121–128Google Scholar
  53. 53.
    Einmahl S, Capancioni S, Schwach-Abdellaoui K, Moeller M, Behar-Cohen F, Gurny R (2001) Therapeutic applications of viscous and injectable poly(ortho esters). Adv Drug Deliv Rev 53:45–73Google Scholar
  54. 54.
    Zignani M, Einmahl S, Baeyens V, Varesio E, Veuthey JL, Anderson J, Heller J, Tabatabay C, Gurny R (2000) A poly(ortho ester) designed for combined ocular delivery of dexamethasone sodium phosphate and 5-fluorouracil: subconjunctival tolerance and in vitro release. Eur J Pharm Biopharm 50:251–255Google Scholar
  55. 55.
    Einmahl S, Zignani M, Varesio E, Heller J, Veuthey JL, Tabatabay C, Gurny R (1999) Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester). Int J Pharm 185:189–198Google Scholar
  56. 56.
    Zignani M, Le Minh T, Einmahl S, Tabatabay C, Heller J, Anderson JM, Gurny R (2000) Improved biocompatibility of a viscous bioerodible poly(ortho ester) by controlling the environmental pH during degradation. Biomaterials 21:1773–1778Google Scholar
  57. 57.
    Merkli A, Heller J, Tabatabay C, Gurny R (1994) Semi-solid hydrophobic bioerodible poly(ortho ester) for potential application in glaucoma filtering surgery. J Control Release 29:105–112Google Scholar
  58. 58.
    Sintzel MB, Schwach-Abdellaoui K, Mader K, Stosser R, Heller J, Tabatabay C, Gurny R (1998) Influence of irradiation sterilization on a semi-solid poly(ortho ester). Int J Pharm 175:165–176Google Scholar
  59. 59.
    Merkli A, Heller J, Tabatabay C, Gurny R (1996) Purity and stability assessment of a semi-solid poly(ortho ester) used in drug delivery systems. Biomaterials 17:897–902Google Scholar
  60. 60.
    Jiang W, Schwendeman SP (2001) Stabilization of a model formalinized protein antigen encapsulated in poly(lactide-co-glycolide)-based microspheres. J Pharm Sci 90:1558–1569Google Scholar
  61. 61.
    Jiang W, Schwendeman SP (2001) Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 18:878–885Google Scholar
  62. 62.
    Yeh MK (2000) The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. J Microencapsul 17:743–756Google Scholar
  63. 63.
    Elvassore N, Bertucco A, Caliceti P (2001) Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci 90:1628–1636Google Scholar
  64. 64.
    Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(D,L-lactide--coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72:13–24Google Scholar
  65. 65.
    Kostanski JW, Thanoo BC, DeLuca PP (2000) Preparation, characterization, and in vitro evaluation of 1- and 4-month controlled release orntide PLA and PLGA microspheres. Pharm Dev Technol 5:585–596Google Scholar
  66. 66.
    Yasukawa T, Kimura H, Tabata Y, Ogura Y (2001) Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:25–36Google Scholar
  67. 67.
    Yasukawa T, Ogura Y, Sakurai E, Tabata Y, Kimura H (2005) Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Deliv Rev 57:2033–2046Google Scholar
  68. 68.
    Kunou N, Ogura Y, Yasukawa T, Kimura H, Miyamoto H, Honda Y, Ikada Y (2000) Long-term sustained release of ganciclovir from biodegradable scleral implant for the treatment of cytomegalovirus retinitis. J Control Release 68:263–271Google Scholar
  69. 69.
    Lee SH, Zhang ZP, Feng SS (2007) Nanoparticles of poly(lactide) – Tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery. Biomaterials 28:2041–2050Google Scholar
  70. 70.
    Maysinger D, Lovric J, Eisenberg A, Savic R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65:270–281Google Scholar
  71. 71.
    Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419Google Scholar
  72. 72.
    Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D (1997) Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci 61:749–761Google Scholar
  73. 73.
    Moghimi SM (1997) Prolonging the circulation time and modifying the body distribution of intravenously injected polystyrene nanospheres by prior intravenous administration of poloxamine-908. A `hepatic-blockade’ event or manipulation of nanosphere surface in vivo? Biochim Biophys Acta 1336:1–6Google Scholar
  74. 74.
    Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC, Davis SS, Illum L (2001) The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta 1514:261–279Google Scholar
  75. 75.
    Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, Jiang XG, Fu SK (2006) The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target 14:281–290Google Scholar
  76. 76.
    Neal JC, Stolnik S, Schacht E, Kenawy ER, Garnett MC, Davis SS, Illum L (1998) In vitro displacement by rat serum of adsorbed radiolabeled poloxamer and poloxamine copolymers from model and biodegradable nanospheres. J Pharm Sci 87:1242–1248Google Scholar
  77. 77.
    Harper GR, Davies MC, Davis SS, Tadros TF, Taylor DC, Irving MP, Waters JA (1991) Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro. Biomaterials 12:695–700Google Scholar
  78. 78.
    Bazile D, Prudhomme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.Peg-Pla nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498Google Scholar
  79. 79.
    Neuzillet Y, Giraud S, Lagorce L, Eugene M, Debre P, Richard F, Barrou B (2006) Effects of the molecular weight of peg molecules (8, 20 and 35 KDA) on cell function and allograft survival prolongation in pancreatic islets transplantation. Transplant Proc 38:2354–2355Google Scholar
  80. 80.
    Fang C, Shi B, Hong MH, Pei YY, Chen HZ (2006) Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats. Yao Xue Xue Bao 41:305–312Google Scholar
  81. 81.
    Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KA, Gallagher RC, Karlsson G, Edwards K, Kenner G, Samuels L, Webb MS, Bally MB (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 1768:1367–1377Google Scholar
  82. 82.
    Zhang ZP, Lee SH, Feng SS (2007) Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials 28:1889–1899Google Scholar
  83. 83.
    Zhang ZP, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033Google Scholar
  84. 84.
    Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102Google Scholar
  85. 85.
    Bittner B, Morlock M, Koll H, Winter G, Kissel T (1998) Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 45:295–305Google Scholar
  86. 86.
    Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188Google Scholar
  87. 87.
    Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloide Surface B 16:3–27Google Scholar
  88. 88.
    Liu J, Zeng F, Allen C (2007) In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm 65:309–319Google Scholar
  89. 89.
    Zhang LF, Eisenberg A (1995) Multiple morphologies of crew-cut aggregates of Polystyrene-B-Poly(Acrylic Acid) block-copolymers. Science 268:1728–1731Google Scholar
  90. 90.
    Geze A, Putaux JL, Choisnard L, Jehan P, Wouessidjewe D (2004) Long-term shelf stability of amphiphilic beta-cyclodextrin nanosphere suspensions monitored by dynamic light scattering and cryo-transmission electron microscopy. J Microencapsul 21:607–613Google Scholar
  91. 91.
    Bittner B, Ronneberger B, Zange R, Volland C, Anderson JM, Kissel T (1998) Bovine serum albumin loaded poly(lactide-co-glycolide) microspheres: the influence of polymer purity on particle characteristics. J Microencapsul 15:495–514Google Scholar
  92. 92.
    Meinel L, Illi OE, Zapf J, Malfanti M, Peter Merkle H, Gander B (2001) Stabilizing insulin-like growth factor-I in poly(D,L-lactide-co-glycolide) microspheres. J Control Release 70:193–202Google Scholar
  93. 93.
    Perez C, De Jesus P, Griebenow K (2002) Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int J Pharm 248:193–206Google Scholar
  94. 94.
    Kang F, Jiang G, Hinderliter A, DeLuca PP, Singh J (2002) Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res 19:629–633Google Scholar
  95. 95.
    Cao R, Villalonga R, Fragoso A (2005) Towards nanomedicine with a supramolecular approach: a review. IEE Proc Nanobiotechnol 152:159–164Google Scholar
  96. 96.
    Branchu S, Forbes RT, York P, Nyqvist H (1999) A central composite design to investigate the thermal stabilization of lysozyme. Pharm Res 16:702–708Google Scholar
  97. 97.
    Mohl S, Winter G (2006) Continuous release of Rh-interferon (alpha-2a from triglyceride implants: storage stability of the dosage forms. Pharm Dev Technol 11:103–110Google Scholar
  98. 98.
    Sanchez A, Tobio M, Gonzalez L, Fabra A, Alonso MJ (2003) Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur J Pharm Sci 18:221–229Google Scholar
  99. 99.
    Van de Weert M, Hoechstetter J, Hennink WE, Crommelin DJ (2000) The effect of a water/organic solvent interface on the structural stability of lysozyme. J Control Release 68:351–359Google Scholar
  100. 100.
    Morlock M, Kissel T, Li YX, Koll H, Winter G (1998) Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. J Control Release 56:105–115Google Scholar
  101. 101.
    Johansen P, Men Y, Audran R, Corradin G, Merkle HP, Gander B (1998) Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm Res 15:1103–1110Google Scholar
  102. 102.
    Pean JM, Boury F, Venier-Julienne MC, Menei P, Proust JE, Benoit JP (1999) Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres? Pharm Res 16:1294–1299Google Scholar
  103. 103.
    Uchida T, Shiosaki K, Nakada Y, Fukada K, Eda Y, Tokiyoshi S, Nagareya N, Matsuyama K (1998) Microencapsulation of hepatitis B core antigen for vaccine preparation. Pharm Res 15:1708–1713Google Scholar
  104. 104.
    Wolf M, Wirth M, Pittner F, Gabor F (2003) Stabilisation and determination of the biological activity of L-asparaginase in poly(D,L-lactide-co-glycolide) nanospheres. Int J Pharm 256:141–152Google Scholar
  105. 105.
    Lam XM, Duenas ET, Cleland JL (2001) Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J Pharm Sci 90:1356–1365Google Scholar
  106. 106.
    Perez-Rodriguez C, Montano N, Gonzalez K, Griebenow K (2003) Stabilization of alpha-chymotrypsin at the CH2Cl2/water interface and upon water-in-oil-in-water encapsulation in PLGA microspheres. J Control Release 89:71–85Google Scholar
  107. 107.
    Castellanos IJ, Crespo R, Griebenow K (2003) Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J Control Release 88:135–145Google Scholar
  108. 108.
    Van Eerdenbrugh B, Froyen L, Martens JA, Blaton N, Augustijns P, Brewster M, Van den Mooter G (2007) Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm 338:198–206Google Scholar
  109. 109.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544Google Scholar
  110. 110.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172Google Scholar
  111. 111.
    Derfus A, Chan W, Bhatia S (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18Google Scholar
  112. 112.
    Aldana J, Lavelle N, Wang Y, Peng X (2005) Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 127:2496–2504Google Scholar
  113. 113.
    Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850Google Scholar
  114. 114.
    Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Comm 5:571–577Google Scholar
  115. 115.
    Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679Google Scholar
  116. 116.
    Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142Google Scholar
  117. 117.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22Google Scholar
  118. 118.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728Google Scholar
  119. 119.
    Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202Google Scholar
  120. 120.
    Borm PJ (2002) Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol 14:311–324Google Scholar
  121. 121.
    Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65Google Scholar
  122. 122.
    Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148Google Scholar
  123. 123.
    Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR, Jr., Banaszak Holl MM (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782Google Scholar
  124. 124.
    Chen HT, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048Google Scholar
  125. 125.
    Lee JH, Lim YB, Choi JS, Lee Y, Kim TI, Kim HJ, Yoon JK, Kim K, Park JS (2003) Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug Chem 14:1214–1221Google Scholar
  126. 126.
    Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YT, Roberts CJ, Davies MC, Munro A, Gray AI, Uchegbu IF (2005) Preferential liver gene expression with polypropylenimine dendrimers. J Control Release 101:247–258Google Scholar
  127. 127.
    Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 99:445–456Google Scholar
  128. 128.
    Godbey WT, Wu KK, Hirasaki GJ, Mikos AG (1999) Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 6:1380–1388Google Scholar
  129. 129.
    Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker JR, Jr. (2001) Substituted beta-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem Biophys Res Commun 283:124–129Google Scholar
  130. 130.
    Blanco D, Alonso MJ (1998) Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm 45:285–294Google Scholar
  131. 131.
    Kwon YM, Baudys M, Knutson K, Kim SW (2001) In situ study of insulin aggregation induced by water-organic solvent interface. Pharm Res 18:1754–1759Google Scholar
  132. 132.
    Raghuvanshi RS, Goyal S, Singh O, Panda AK (1998) Stabilization of dichloromethane-induced protein denaturation during microencapsulation. Pharm Dev Technol 3:269–276Google Scholar
  133. 133.
    Griebenow K, Klibanov AM (1996) On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J Am Chem Soc 118:11695–11700Google Scholar
  134. 134.
    Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 60:179–188Google Scholar
  135. 135.
    Shoyele SA, Cawthorne S (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 58:1009–1029Google Scholar
  136. 136.
    Johnson KA (1997) Preparation of peptide and protein powders for inhalation. Adv Drug Deliv Rev 26:3–15Google Scholar
  137. 137.
    Schlocker W, Gschliesser S, Bernkop-Schnurch A (2006) Evaluation of the potential of air jet milling of solid protein-poly(acrylate) complexes for microparticle preparation. Eur J Pharm Biopharm 62:260–266Google Scholar
  138. 138.
    Hinrichs WL, Sanders NN, De Smedt SC, Demeester J, Frijlink HW (2005) Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes. J Control Release 103:465–479Google Scholar
  139. 139.
    Ohtake S, Schebor C, Palecek SP, de Pablo JJ (2005) Phase behavior of freeze-dried phospholipid-cholesterol mixtures stabilized with trehalose. Biochim Biophys Acta 1713:57–64Google Scholar
  140. 140.
    Bittner B, Kissel T (1999) Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J Microencapsul 16:325–341Google Scholar
  141. 141.
    Adler M, Unger M, Lee G (2000) Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm Res 17:863–870Google Scholar
  142. 142.
    Codrons V, Vanderbist F, Verbeeck RK, Arras M, Lison D, Preat V, Vanbever R (2003) Systemic delivery of parathyroid hormone (1-34) using inhalation dry powders in rats. J Pharm Sci 92:938–950Google Scholar
  143. 143.
    Andya JD, Maa YF, Costantino HR, Nguyen PA, Dasovich N, Sweeney TD, Hsu CC, Shire SJ (1999) The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonal antibody. Pharm Res 16:350–358Google Scholar
  144. 144.
    Bosquillon C, Preat V, Vanbever R (2004) Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J Control Release 96:233–244Google Scholar
  145. 145.
    Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Preat V, Vanbever R (2004) Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release 99:357–367Google Scholar
  146. 146.
    Labrude P, Rasolomanana M, Vigneron C, Thirion C, Chaillot B (1989) Protective effect of sucrose on spray drying of oxyhemoglobin. J Pharm Sci 78:223–229Google Scholar
  147. 147.
    Liao YH, Brown MB, Jones SA, Nazir T, Martin GP (2005) The effects of polyvinyl alcohol on the in vitro stability and delivery of spray-dried protein particles from surfactant-free HFA 134a-based pressurised metered dose inhalers. Int J Pharm 304:29–39Google Scholar
  148. 148.
    Brandenberger H (2003) Best@buchi evaporation. Inf Bull 27Google Scholar
  149. 149.
    Irngartinger M, Camuglia V, Damm M, Goede J, Frijlink HW (2004) Pulmonary delivery of therapeutic peptides via dry powder inhalation: effects of micronisation and manufacturing. Eur J Pharm Biopharm 58:7–14Google Scholar
  150. 150.
    Chan HK (2006) Dry powder aerosol delivery systems: current and future research directions. J Aerosol Med 19:21–27Google Scholar
  151. 151.
    Costantino HR, Firouzabadian L, Hogeland K, Wu C, Beganski C, Carrasquillo KG, Cordova M, Griebenow K, Zale SE, Tracy MA (2000) Protein spray-freeze drying. Effect of atomization conditions on particle size and stability. Pharm Res 17:1374–1383Google Scholar
  152. 152.
    Yu Z, Johnston KP, Williams RO, 3rd (2006) Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci 27:9–18Google Scholar
  153. 153.
    Yu Z, Garcia AS, Johnston KP, Williams RO, 3rd (2004) Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur J Pharm Biopharm 58:529–537Google Scholar
  154. 154.
    Yu Z, Rogers TL, Hu J, Johnston KP, Williams RO, 3rd (2002) Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm 54:221–228Google Scholar
  155. 155.
    Rogers TL, Hu J, Yu Z, Johnston KP, Williams RO, 3rd (2002) A novel particle engineering technology: spray-freezing into liquid. Int J Pharm 242:93–100Google Scholar
  156. 156.
    Rogers TL, Nelsen AC, Hu J, Brown JN, Sarkari M, Young TJ, Johnston KP, Williams RO, 3rd (2002) A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm 54:271–280Google Scholar
  157. 157.
    Henczka M, Baldyga J, Shekunov BY (2006) Modelling of spray-freezing with compressed carbon dioxide. Chem Eng Sci 61:2880–2887Google Scholar
  158. 158.
    Pasquali I, Bettini R, Giordano F (2006) Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci 27:299–310Google Scholar
  159. 159.
    Elvassore N, Baggio M, Pallado P, Bertucco A (2001) Production of different morphologies of biocompatible polymeric materials by supercritical CO(2) antisolvent techniques. Biotechnol Bioeng 73:449–457Google Scholar
  160. 160.
    NIOSH (2006) Approaches to Safe nanotechnology: An Information Exchange with NIOSH. The National Institute of Occupational Safety and Health, Washington, DCGoogle Scholar
  161. 161.
    Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8Google Scholar
  162. 162.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839Google Scholar
  163. 163.
    Curtis J, Greenberg M, Kester J, Phillips S, Krieger G (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25:245–260Google Scholar
  164. 164.
    Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614Google Scholar
  165. 165.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627Google Scholar
  166. 166.
    Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles Environ Health Perspect 97:193–199Google Scholar
  167. 167.
    Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460Google Scholar
  168. 168.
    MacNee W, Donaldson K (2003) Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J 40:47s–51sGoogle Scholar
  169. 169.
    Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926Google Scholar
  170. 170.
    Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384Google Scholar
  171. 171.
    Anand VP. Biocompatibility Safety Assessment of Medical Devices: FDA/ISO and Japanese Guidelines.
  172. 172.
    FDA (2004) Challenge and opportunity on the critical path to new medical products. US Food and Drug Administration, Rockville, MDGoogle Scholar
  173. 173.
    FDA (2006) Early Development considerations for innovative combination products. US Food and Drug Administration, Rockville, MDGoogle Scholar
  174. 174.
    FDA (2006) Exploratory IND studies. US Food and Drug Administration, Rockville, MDGoogle Scholar
  175. 175.
    FDA (2001) Changes or modifications during the conduct of a clinical investigation; Final guidance for industry and CDRH staff. US Food and Drug Administration, Rockville, MDGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaohong Wei
    • 1
    • 2
  • Yong-kyu Lee
    • 3
  • Kang Moo Huh
    • 4
  • Sungwon Kim
    • 2
  • Kinam Park
    • 5
  1. 1.College of Pharmaceutical ScienceZhejiang UniversityZhejiangChina
  2. 2.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  3. 3.Department of Chemical and Biological EngineeringChungju National UniversityChungbukKorea
  4. 4.School of Applied Chemistry and Biological EngineeringChungnam National, UniversityDaejeonKorea
  5. 5.Department of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations