Breeching Epithelial Barriers – Physiochemical Factors Impacting Nanomaterial Translocation and Toxicity

  • Lisa DeLouise
  • Luke Mortensen
  • Alison Elder
Part of the Nanostructure Science and Technology book series (NST)


With the surging nanotechnology industry, the likelihood of intentional consumer and unintended worker-related skin and lung exposures to various types of nanomaterials is assured. From existing literature, there is clear evidence that some nanomaterials can passively breech epithelial barriers. For skin, mechanical flexing can facilitate penetration of large micron-sized particles and, for both skin and lung, the health status will affect barrier function. Nanoparticle toxicology is, however, an emerging field and inconsistencies in the published literature exist. Inconsistencies should be anticipated as there is currently no standardized set of tests by which nanoparticle toxicity can be determined. Therefore, the question of nanomaterial toxicity resulting from unintended epithelial permeation remains open. In vitro cytotoxicity studies clearly indicate that nanomaterials are toxic to skin and lung cells under certain conditions. The relevance of these results is difficult to extrapolate, as there is a presumption of epithelial permeation. This chapter discusses what is known and what is not known about physiochemical factors impacting nano material translocation and toxicity.


Olfactory Bulb Stratum Corneum Hair Follicle Skin Permeation Franz Diffusion Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamson IY, Bowden DH (1975) Derivation of type I epithelium from type II cells in the developing rat lung. Lab Invest 32(6):736–745.Google Scholar
  2. Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. PNAS 99:12617–12621.Google Scholar
  3. Alvarez-Roma R, Naika A, Kaliaa YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99(1):53–62.Google Scholar
  4. Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130.Google Scholar
  5. Ahsan F, Rivas IP, Khan MA, Suárez-Torres AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers – liposomes and microspheres – on the phagocytosis by macrophages. J Control Release 79:29–40.Google Scholar
  6. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Brisis V, Chaneac C, Olivi L, Berge-Lefranc J-L, Botta A, Wiesner MR, Bottero J-Y (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373.Google Scholar
  7. Badea I, Wettig S, Verrall R, Foldvari, M (2007) Topical non-invasive gene delivery using gemini nanoparticles in interferon-?-deficient mice. Eur J Pharm Biopharm 65:414–422.Google Scholar
  8. Bateson TF, Schwartz J (2004) Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology 15(2):143–149.Google Scholar
  9. Bailey M.R. (1994) The new ICRP model for the respiratory tract. Radiation Protection Dosimetry 53:107–114.Google Scholar
  10. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin, J Invest Dermatol 127(7):1701–1712.Google Scholar
  11. Barbero AM, Frasch HF (2006) Transcellular route of diffusion through stratum corneum: results from finite element models, J Pharm Sci 95(10):2186–2194.Google Scholar
  12. Baron PA, Maynard AD, Foley M (2002) Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube material. National Institute for Occupational Safety and Health, Cincinnati (OH), NIOSH report:DART-02-191.Google Scholar
  13. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI. (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide. Toxicol Sci 70:86–97.Google Scholar
  14. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary Responses of Rats, Mice, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicol Sci 77:347–357.Google Scholar
  15. Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran or albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557.Google Scholar
  16. Berry CC, Charles S, Wells S, Dalby MJ, Curtis AS (2004) The influence of transferrin stabilized magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269(1): 211–225.Google Scholar
  17. Bodian D, Howe HA (1941a) Experimental studies on intraneural spread of poliomyelitis virus, Bull Johns Hopkins Hosp 68:248–267.Google Scholar
  18. Bodian D, Howe HA (1941b) The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 69:79–85.Google Scholar
  19. The Royal Society and the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society.Google Scholar
  20. Brouxhon S, Kyranides S, O’Banion MK, Johnson R, Pearce DA, MGrath K, Erdle B, Scott G, Schneider S, VanBuskirk J, Pentland AP (2007) Sequential downregulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2–EP2 dependent mechanism. Cancer Res (in Press).Google Scholar
  21. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB, Kleinman M (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:133–140.Google Scholar
  22. Carter JM, Corson N, Driscoll KE, Elder A, Finkelstein JN, Harkema JR, Gelein R, Wade- Mercer P, Nguyen K, Oberdörster G (2006) A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med 48:1265–1278.Google Scholar
  23. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS 104:2050–2055.Google Scholar
  24. Chang E, Yu WW, Colvin VL, Drezek RJ (2005) Quantifying the influence of surface coatings on quantum dot uptake in cells. J Biomed Nanotechnol 1:397–401.Google Scholar
  25. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of QDot cytotoxicity based on intracellular uptake. Small 2(12):1412–1417.Google Scholar
  26. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nature biotechnology 25:1165–1170. Google Scholar
  27. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles. Skin Pharmacol Physiol 20(3):148–154.Google Scholar
  28. Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419.Google Scholar
  29. Curtis J, Greenberg M, Kester J, Phillips S, Krieger G (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25(4):245–260.Google Scholar
  30. Dayan N (2005) Pathways for skin penetration. Cosmetics & Toiletries Magazine 120(6):67–76.Google Scholar
  31. DeLorenzo, AJD (1970) The olfactory neuron and the blood-brain barrier. In: Wolstenholme GEW, Knight J (eds) Taste and smell in vertebrates. J&A Churchill, London, pp 151–176.Google Scholar
  32. Dick IP, Scott RC (1992) Pig ear skin as an in-vitro model for human skin permeability. J Pharm Pharmacol 44(8):640–645.Google Scholar
  33. Ding L, Stilwell J, Zhang T, Omeed Elboudwarej O, Huijian Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotube and nano-onions on human skin fibroblast. Nano Lett 5(12):2448–2464.Google Scholar
  34. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of Qdots. Nano Lett 4(1): 11–18.Google Scholar
  35. Destree C, Ghijsen J, Nagy JB (2007) Preparation of organic nanoparticles using microemulsions: their potential use in transdermal delivery. Langmuir 23(4):1965–1973.Google Scholar
  36. Eedy DJ (1996) Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermatitis 35(6):362–363.Google Scholar
  37. Elder A, Gelein R, Finkelstein J, Phipps R, Frampton M, Utell M, Topham D, Kittelson D, Watts W, Hopke P, Jeong C-H, Kim E, Liu W, Zhao W, Zhou L, Vincent R, Kumarathasan P, Oberdörster G (2004) On-road exposure to highway aerosols. 2. Exposures of aged, compromised rats. Inhal Toxicol 16:41–53.Google Scholar
  38. Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G (2005) Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci 88:614–629.Google Scholar
  39. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect 114:1172–1178.Google Scholar
  40. Elder A, Couderc J-P, Gelein R, Eberly S, Cox C, Xia X, Zareba W, Hopke P, Watts W, Kittelson D, Frampton M, Utell M, Oberdörster G (2007) Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. Inhal Toxicol 19: 1–12.Google Scholar
  41. Elder ACP, Gelein R, Finkelstein JN, Cox C, Oberdörster G (2000) The pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12:227–246.Google Scholar
  42. Fien SM, Oseroff AR (2007) Photodynamic therapy for non-melanoma skin cancer. J Natl Compr Cancer Network 5(5):531–540.Google Scholar
  43. Fischer HC, Liu L, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16(10): 1299–1305.Google Scholar
  44. Frampton MW, Utell MJ, Zareba W, Oberdörster G, Cox C, Huang LS, Morrow PE, Lee FE, Chalupa D, Frasier LM, Speers DM, Stewart JC (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 126:1–47.Google Scholar
  45. Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol in Vitro 20(3):301–307.Google Scholar
  46. Gbadamosi HJ, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett, 532(3):338–344.Google Scholar
  47. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier: structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95:2281–2290.Google Scholar
  48. Ghitescu L, Fixman A (1984) Surface charge distribution on the endothelial cells of liver sinusoids. J Cell Biol, 99:639–647.Google Scholar
  49. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257.Google Scholar
  50. Grenha A, Seijo B, Remuñán-López C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25(4–5):427–437.Google Scholar
  51. Griese M (1999) Pulmonary surfactant in health and human lung diseases: state of the art. Eur Resp J 13:1455–1476.Google Scholar
  52. Gupta AK, Gupta, M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1563–1573.Google Scholar
  53. Hahn FF, Newton GJ, Bryant PL (1977) In vitro phagocytosis of respirable-sized monodisperse particles by alveolar macrophages. In Sanders CL, Schneider RP, Dagle GE, Ragen HA (eds) Pulmonary macrophages and epithelial cells, vol 43. Technical Information Center, Energy Research and Development Administration, Oak Ridge, pp 424–435.Google Scholar
  54. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health 114(2):165–172.Google Scholar
  55. Holmberg SB, Forssell-Aronsson E, Gretarsdottir J, Jacobsson L, Rippe B, Hafstrom L (1990) Vascular clearance by the reticuloendothelial system--measurements using two different-sized albumin colloids. Scand J Clin Lab Invest 50(8):865–871.Google Scholar
  56. Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from the vesicle formulation into human skin in vivo. JID 123:902–910.Google Scholar
  57. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169.Google Scholar
  58. Hostynek JJ, Maibach HI (2004) Copper hypersensitivity: dermatologic aspects. Dermatol Ther 17(4):328–333.Google Scholar
  59. Hostynek JJ, Dreher F, Nakada T, Schwindt D, Anigbogu A, Maibach HI (2001) Human stratum corneum adsorption of nickel salts. Investigation of depth profiles by tape stripping in vivo. Acta Derm Venereol Suppl 212:11–18.Google Scholar
  60. Hueber F, Wepierre J, Schaefer H (1992) Role of transepidermal and transfollicular routes in percutaneous absorption of hydrocortisone and testosterone: in vivo study in the hairless rat. Skin Pharmacol 5:99–107.Google Scholar
  61. International Committee on Radiological Protection (1994) Human Respiratory Tract Model for Radiological Protection. A Report of Committee 2 of the ICRP, Pergamon Press, Oxford.Google Scholar
  62. Illel B (1997) Formulation for transfollicular drug administration: some recent advances. Crit Rev Ther Drug Carrier Syst 14(3):207–219.Google Scholar
  63. Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709.Google Scholar
  64. Javier AM, Kreft O, Alberola AP, Kirchner C, Zebli B, Susha AS, Horn E, Kempter S, Skirtach AG, Rogach AL, Rädler J, Sukhorukov GB, Benoit M, Parak WJ (2006) Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. Small 2(3):394–400.Google Scholar
  65. Jiang JS, Chu AW, Lu ZF, Pan MH, Che DF, Shou XJ (2007) Ultraviolet B-induced alterations of the skin barrier and epidermal calcium gradient. Exp Dermatol 16:985–992. Google Scholar
  66. Junquiera CL, Carneiro J, Kelley RO (1992) Basic histology, 7th edn. Appleton and Lange, Englewood Cliffs NJ.Google Scholar
  67. Kim MK, Choi SY, Byun HJ, Huh CH, Park KC, Patel RA, Shinn AH, Youn SW (2006) Comparison of sebum secretion, skin type, pH in humans with and without acne, Arch Dermatol Res 298:113–119.Google Scholar
  68. Kim KJ, Malik AB (2003) Protein transport across the lung epithelial barrier. Am J Physiol 284(2):L247–L259.Google Scholar
  69. Kittelson DB, Watts WF, Johnson JP, Remerowski ML, Ische EE, Oberdörster G, Gelein RM, Elder A, Hopke PK (2004) On-road exposure to highway aerosols. 1. Aerosol and gas measurements. Inhal Toxicol 16:31–39.Google Scholar
  70. Klein J (2007) Probing the interactions of proteins and nanoparticles, PNAS 104:2029–2030.Google Scholar
  71. Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL (2002) Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health 65(20): 1545–1569.Google Scholar
  72. Kohli AK, Aplar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275:13–17.Google Scholar
  73. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530.Google Scholar
  74. Künzli N, Jerret M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206.Google Scholar
  75. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in the Horny Layer and the Follicular Orifice. Skin Pharmacol Appl Skin Physiol 12:247–256.Google Scholar
  76. Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006a) Hair follicles – A long-term reservoir for drug delivery. Skin Pharmacol Physiol 19(4): 232–236.Google Scholar
  77. Lademann J, Ilgevicius A, Zurbau O, Liess HD, Schanzer S, Weigmann HJ, Antoniou C, Pelchrzim RV, Sterry W (2006b) Penetration studies of topically applied substances: optical determination of the amount of stratum corneum removed by tape stripping. J Biomed Optics 11(5): 054026–1 to 054026–6.Google Scholar
  78. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiss B, Schaefer UF, Lehr CM, Wepf R, Sterry W (2007) Nanoparticles – An efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm, 66:159–164.Google Scholar
  79. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134. Google Scholar
  80. Lambert AL, Mangum JB, DeLorme MP, Everitt JI (2003) Ultrafine carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary inflammation, and chemokine expression. Toxicol Sci 72:339–346.Google Scholar
  81. Lee S, Lee J, Choi YW (2007) Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol & Pharm Bull 40(2):393–396.Google Scholar
  82. Li L, Hamilton RF Jr, Kirichenko A, Holian A (1996) 4-hydroxynonenal-induced cell death in murine alveolar macrophages. Toxicol Appl Pharmacol 139:135–143.Google Scholar
  83. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460.Google Scholar
  84. Li JG, Li WX, Xu JY, Cai XO, Liu RL, Li YJ, Zhao QF, Li QN (2007) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22(4):415–421.Google Scholar
  85. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2006) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328(2):191–195.Google Scholar
  86. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005a) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234.Google Scholar
  87. Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005b) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385.Google Scholar
  88. Lutz O, Meraihi Z, Mura JL, Frey A, Riess GH, Bach AC (1989) Fat emulsion particle size: influence on the clearance rate and the tissue lipolytic activity. Am J Clin Nutr 50(6):1370–1381.Google Scholar
  89. Marro D, Guy RH, Delgado-Charro MB (2001) Characterizaton of the iontophoretic permselectivity properties of human and pig skin. J Control Release 70:213–217.Google Scholar
  90. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single walled carbon nanotube induces oxidative stress and activates nuclear transcription factor kappa B in human keratinocyte cells. Nano Lett 5(9):1676–1684.Google Scholar
  91. Meidan VM, Bonner MC, Michniak BB (2006) Transfollicular drug delivery – Is it a reality? Int J Pharm, 306(1–2):1–14.Google Scholar
  92. Menon GK, Feingold KR, Elias PM (1992) Lamellar body secretory response to barrier disruption. J Invest Dermatol, 98:279–289.Google Scholar
  93. Mortensen L, Pentland AP, Oberdorstor G, DeLouise LA (2007) In vivo study of quantum dots penetration through skin, 2007 preliminary data.Google Scholar
  94. Monterio-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005a) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384.Google Scholar
  95. Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ (2005b) Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomed: Nanotechnol, Biol, Med 1: 293–299.Google Scholar
  96. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.Google Scholar
  97. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(3):622–627.Google Scholar
  98. Ng AW, Bidani A, Heming TA (2004) Innate host defense of the lung: effects of lung-lining fluid pH. Lung 182:297–317.Google Scholar
  99. Nemmar A, Hoylaerts M, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery, B (2002) Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 166(7):598–1004.Google Scholar
  100. Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062.Google Scholar
  101. Oberdörster G, Ferin J, Lehnert B (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179.Google Scholar
  102. Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder ACP (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Health Effects Institute, Cambridge, Report 96, pp. 1–74. Google Scholar
  103. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 65:1531–1543.Google Scholar
  104. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445.Google Scholar
  105. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113(71):823–839.Google Scholar
  106. Pentland AP, Schoggins JW, Scott GA, Khan KNM, Rujing Han R (1999) Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20(10):1939–1944.Google Scholar
  107. Parisel C, Saffar L, Gattegno L, Andre V, Abdul-Malak N, Perrier E, Letourneur D (2003) Interactions of heparin with human skin cells: binding, location, and transdermal penetration. Journal of Biomedical Materials Research Part A 67(2):517–523.Google Scholar
  108. Pernodet N, Fang XH, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773.Google Scholar
  109. Peters A, Wichmann H-E, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383.Google Scholar
  110. Phalen RF, Yeh H, Praasad SB (1995) Morphology of the respiratory tract. In: McClellan RO, Henderson RF (eds) Concepts in inhalation toxicology, 2nd edn. Taylor and Francis, Washington, D.C. pp 129–149.Google Scholar
  111. Proksch E, Brasch J (1997) Influence of epidermal permeability barrier disruption and Langerhans’ cell density on allergic contact dermatitis. Acta Derm Venereol 108, 73.Google Scholar
  112. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74.Google Scholar
  113. Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY (2005) The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med. 172(1):136–139.Google Scholar
  114. Ross MH, Romrell LJ (1989) Histology: a text Williams and Wilkins, Baltimore, MD and atlas, 2nd edn.Google Scholar
  115. Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol in vitro 20(8):1313–1320.Google Scholar
  116. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monterio-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7(1):155–160.Google Scholar
  117. Ryman-Rasmussen JP, Riviere JE, Montero-Riviere NA (2006) Penetration of intact skin by QDots with diverse physicochemical properties. Toxicol Sci 91(1):159–165.Google Scholar
  118. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007a) Variables influencing interactions of untargeted QDots with skin cell and identification of biochemical modulators. Nano Lett 7(5):1344–1348.Google Scholar
  119. Ryman-Rasmussen JP, Riviere JE, Montero-Riviere NA (2007b) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153.Google Scholar
  120. Salleh A. (2004) Nano sunblock safety under scrutiny, News in Science ABC Science Online.
  121. Sayes CM, Fortner J, Lyon D et al (2004) The differential cytotoxicity of water soluble fullerenes. Nano Lett 4:1881–1887.Google Scholar
  122. Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595.Google Scholar
  123. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006a) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1): 174–185.Google Scholar
  124. Sayes CM, Liang F, Hudson JL, Mendeza J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WL, Ausman KD, Colvin VL (2006b) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142.Google Scholar
  125. Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R (2006) Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 58:996–1008.Google Scholar
  126. Schulz J, Hohenberg, H, Pflücker F, G ärtner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern, KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl. 1):S157–S163.Google Scholar
  127. Schwarz VA, Klein SD, Hornung RÂ, Knochenmuss R, Wyss P, Fink D, Haller U, Walt H (2001) Skin protection for photosensitized patients. Lasers Surg Med 29:252–259.Google Scholar
  128. Schlesinger RB (1995) Deposition and clearance of inhaled particles. In: McClellan RO, Henderson RF (eds) Concepts in inhalation toxicology, 2nd edn. Taylor and Francis, Washington, D.C. pp 191–224.Google Scholar
  129. Shim J, Seok KH, Park WS, Han SH, Kim J, Chang IS (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release 97(3):477–484.Google Scholar
  130. Shvedova AA, Castranova V, Kisin ER (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926.Google Scholar
  131. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol 289:L698–L708.Google Scholar
  132. Silva VM, Corson N, Elder A, Oberdörster G (2005) The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci 85:983–989.Google Scholar
  133. Sincai M, Argherie D, Ganga D, Bica D, Vekas L (2007) Application of some magnetic nanocompounds in the protection against sun radiation. J Magn Magn Mater 311(1):363–366.Google Scholar
  134. Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80(3):377–385.Google Scholar
  135. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047.Google Scholar
  136. Tan M, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37(4):185–187.Google Scholar
  137. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20(7):1202–1212.Google Scholar
  138. Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen T, Tiittanen P, Kreyling W, Pekkanen J (2005) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Anal Environ Epidemiol 16(4): 332–341.Google Scholar
  139. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1208.Google Scholar
  140. Thomas-Ahner JM, Wulff BC, Tober KL, Kusewitt DF, Riggenbach JA, Oberyszyn TM (2007) Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res 67(7):3468–3474.Google Scholar
  141. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting terminal hair follicles. JID 123:168–176.Google Scholar
  142. Trinchieri G, Kubin M, Bellone G, Cassatella MA (1993) Cytokine cross-talk between phagocytic cells and lymphocytes: relevance for differentiation/activation of phagocytic cells and regulation of adaptive immunity. J Cell Biochem 53(4):301–308.Google Scholar
  143. Tripp CS, Blomme EAG, Chinn KS, Hardy MM, LaCelle P, Pentland AP (2003) Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the roe of COX-2 inhibition in photoprotection. J Invest Dermatol 121:853–861.Google Scholar
  144. Tsay JM, Michalet X (2005) New light on quantum dot cytotoxicity. Chem Biol 12:1159–1161.Google Scholar
  145. Turbill P, Beugeling T, Poot AA (1996) Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials 17(13):1279–1287.Google Scholar
  146. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U (2006) 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol 126:1316–1322.Google Scholar
  147. Wagner H, Kosta HH, Lehr CM, Schaefer UF (2003) pH profiles in human skin: influence of two in vitro test systems for drug delivery testing. Euro J Pharma Biopharm 55:57–65.Google Scholar
  148. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77: 117–125.Google Scholar
  149. Washington N, Steele RJC, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198:139–146.Google Scholar
  150. Weyenberg W, Filev, P, Van den Plas D, Vandervoort J, De Smet K, Sollie P, Ludwig A (2007) Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int J Pharm 337(1–2):291–298.Google Scholar
  151. Witzmann FA, Monteiro-Riviere NA (2006) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomed: Nanotechnol, Biol, Med 2:158–168.Google Scholar
  152. Wissing SA, Muller RH (2002) The influence of the crystallinity of lipid nanoparticles on their occlusive properties, Int J Pharm 242:377–379.Google Scholar
  153. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.Google Scholar
  154. Yacobi NR, Demaio L, Xie J, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomed 4(20):139–145. Google Scholar
  155. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185.Google Scholar
  156. Zanobetti A, Schwartz J (2001) Are diabetics more susceptible to the health effects of airborne particles? Am J Respir Crit Care Med 164(5):831–833.Google Scholar
  157. Zanobetti A, Schwartz J (2002) Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 13(5):588–592.Google Scholar
  158. Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression. Nano Lett 6(4):800–808.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Dermatology, Biomedical Engineering and Environmental MedicineUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations