Advertisement

Fundamentals of Photoemission from Quantum Dots of Various Nonparabolic Materials

  • Kamakhya Prasad Ghatak
  • Debashis De
  • Sitangshu Bhattacharya
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Introduction

It is well known that in quantum dots (QDs), all directions of motion of the electron in its wave vector space are quantized and the DOS function changes from the Heaviside step function to the Dirac’s delta function, as discussed in Chapter 1. For QDs of different shapes, the potential is nonseparable and the Schrodinger differential equation should in general be solved through numerical analysis [1]. In this chapter, in Section 3.2.1 on theoretical background, the photoemission from QDs of nonlinear optical materials is investigated. In Sections 3.2.2 through 3.2.5 the photoemission from QDs of III–V, II–VI, n-GaP, and n-Ge is studied,respectively.

It may be noted that Tellurium (Te) finds applications in thin-film transistors (TFT) [2], CO2 laser detectors [3], electronic imaging, strain sensitive devices [4] and multichannel Bragg cells [5]. The Section 3.2.6 contains the investigation of photoemission from QDs of Tellurium. The Section 3.2.7 presents the...

Keywords

Dispersion Relation Electron Concentration Bismuth Telluride Cadmium Selenide Versus Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Bimberg, M. Grundmann, N N. Ledentsov, Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures , (John Wiley & Sons, USA, 1999); G. Konstantatos, I. Howard, A. Fischer, S. Howland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 442 442 442 442 , 180 (2006).Google Scholar
  2. 2.
    P. K. Weimer,Proc. IEEE 52 52 52 52 , 608 (1964).CrossRefGoogle Scholar
  3. 3.
    G. Ribakovs, A. A. Gundjian, IEEE, J. Quant. Electron. QE-14 QE-14 QE-14 QE-14 , 42 (1978).Google Scholar
  4. 4.
    S. K. Dey, J. Vac. Sc. Tech. 10 10 10 10 , 227 (1973); S. J. Lynch, Thin Solid Films 102 102 102 102 , 47 (1983).CrossRefGoogle Scholar
  5. 5.
    V. V. Kudzin, V. S. Kulakov, D. R. Pape', S. V. Kulakov, V. V. Molotok, IEEE, Ultrasonics Symposium 1 1 1 1 , 749 (1997).Google Scholar
  6. 6.
    M. S. Dresselhaus, J. G. Mavroides, IBM J. Red. Develop. 8 8 8 8 , 262 (1964); P. R. Schroeder, M. S. Dresselhaus, A. Javan, Phys. Rev. Lett. 20 20 20 20 , 1292 (1968); M. S. Dresselhaus, In: Proceedings of the Conference on the Physic of Semimetals and Narrow Gap Semiconductors, Ed. D. L. Carter, R. T. Bate. (Pergamon Press, USA 1970); M. S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51: 1 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Matsushita, K. Kawai, H. Uchida, IEEE J. Lightwave Technol. LT-3 LT-3 LT-3 LT-3 , 533 (1985); N. K. Ailawadi, R. C. Alferness, G. D. Bergland, R. A. Thompson, IEEE Mag. Lightwave Telecommun. Sys. 2 2 2 2 , 38 (1991); K. Kubota, J. Noda, O. Mikami, IEEE J. Quant. Electron. QE-16 QE-16 QE-16 QE-16 , 754 (1980); R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, IEEE J. Quant. Electron. QE-19 QE-19 QE-19 QE-19 , 1339 (1983), R. G. Walker, IEEE J. Quant. Electron. 27 27 27 27 , 654 (1991).Google Scholar
  8. 8.
    G. P. Agrawal, N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, USA, 1993); S. Chatterjee, U. Pal, Opt. Eng. 32 32 32 32 , 2923 (1993); T. K. Chaudhuri, Int. J. Energy Res. 16 16 16 16 , 481 (1992); J. H. Dughaish, Phys. B 322 322 322 322 , 205 (2002); C. Wood, Rep. Prog. Phys. 51 51 51 51 , 459 (1988).CrossRefGoogle Scholar
  9. 9.
    K.-F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 303 303 303 303 , 818 (2004); J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D’Angelo, A. Downey, T. Hogan, M. G. Kanatzidis, Adv. Mater. 18 18 18 18 , 1170 (2006); P. F. P. Poudeu, J. D’Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, Angew. Chem. Int. Ed. 45 45 45 45 , 3835, (2006); P. F. Poudeu, J. D’Angelo, H. Kong, A. Downey, J. L. Short, R. Pcionek, T. P. Hogan, C. Uher, M. G. Kanatzidis, J. Am. Chem. Soc. 128 128 128 128 , 14347 (2006); J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, M. G. Kanatzidis, Chem. Mater. 18 18 18 18 , 4993 (2006).CrossRefGoogle Scholar
  10. 10.
    A. J. Mountvala, G. Abowitz, J. Am. Ceram. Soc. 48 48 48 48 , 651 (1965); E. I. Rogacheva, I. M. Krivulkin, O. N. Nashchekina, A. Yu. Sipatov, V. A. Volobuev, M. S. Dresselhaus, Appl. Phys. Lett. 78, 3238 (2001); H. S. Lee, B. Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, J. Y. Huh, Appl. Phys. Lett. 85 85 85 85 , 2782 (2004); K. Kishimoto, M. Tsukamoto, T. Koyanagi, J. Appl. Phys. 92 92 92 92 , 5331 (2002).CrossRefGoogle Scholar
  11. 11.
    E. I. Rogacheva, O. N. Nashchekina, S. N. Grigorov, M. A. Us, M. S. Dresselhaus, S. B. Cronin, Nanotechnology 14 14 14 14 , 53 (2003).CrossRefGoogle Scholar
  12. 12.
    E. I. Rogacheva, O. N. Nashchekina, A. V. Meriuts, S. G. Lyubchenko, M. S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 86 86 86 86 , 063103 (2005); E. I. Rogacheva, S. N. Grigorov, O. N. Nashchekina, T. V. Tavrina, S. G. Lyubchenko, A. Yu. Sipatov, V. V. Volobuev, A. G. Fedorov, M. S. Dresselhaus, Thin Solid Films 493 493 493 493 , 41 (2005).Google Scholar
  13. 13.
    X. Qiu, Y. Lou, A. C. S. Samia, A. Devadoss, J. D. Burgess, S. Dayal, C. Burda, Angew. Chem., Int. Ed. 44 44 44 44 , 5855 (2005).CrossRefGoogle Scholar
  14. 14.
    C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62 62 62 62 , 1957 (2001); B. Poudel, W. Z. Wang, D. Z. Wang, J. Y. Huang, Z. F. Ren, J. Nanosci. Nanotechnol. 6 6 6 6 , 1050 (2006); B. Zhang, J. He, T. M. Tritt, Appl. Phys. Lett. 88 88 88 88 , 043119 (2006); W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, M. Yano, Appl. Phys. Lett. 88 88 88 88 , 192109 (2006).CrossRefGoogle Scholar
  15. 15.
    B. A. Akimov, V. A. Bogoyavlenskiy, L. I. Ryabova, V. N. Vasil’kov, Phys. Rev. B 61 61 61 61 , 16045 (2000); Ya. A. Ugai, A. M. Samoilov, M. K. Sharov, O. B. Yatsenko, B. A. Akimov, Inorg. Mater. 38 38 38 38 , 12 (2002); Ya. A. Ugai, A. M. Samoilov, S. A. Buchnev, Yu. V. Synorov, M. K. Sharov, Inorg. Mater. 38 38 38 38 , 450 (2002); A. M. Samoilov, S. A. Buchnev, Yu. V. Synorov, B. L. Agapov, A. M. Khoviv, Inorg. Mater. 39 39 39 39 , 1132 (2003); A. M. Samoilov, S. A. Buchnev, E. A. Dolgopolova, Yu. V. Synorov, A. M. Khoviv, Inorg. Mater. 40 40 40 40 , 349 (2004); H. Murakami, W. Hattori, R. Aoki, Phys. C 269 269 269 269 , 83 (1996); H. Murakami, W. Hattori, Y. Mizomata, R. Aoki, Phys. C 273 273 273 273 , 41 (1996); H. Murakami, R. Aoki, K. Sakai, Thin Solid Films 343 343 343 343 , 27 (1999).CrossRefGoogle Scholar
  16. 16.
    B. A. Volkov, L. I. Ryabova, D. R. Khokhlov, Phys. Usp. 45 45 45 45 , 819 (2002), and references therein.Google Scholar
  17. 17.
    A. N. Baranov, T. I. Voronina, N. S. Zimogorova, L. M. Kauskaya, Y. P. Yakoviev, Sov. Phys. Semicond. 19 19 19 19 , 1676 (1985); M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, Jpn. J. Appl. Phys. 17 17 17 17 , 2091 (1978); F. S. Yuang, Y. K. Su, N. Y. Li, Jpn. J. Appl. Phys. 30 30 30 30 , 207 (1991); F. S. Yuang., Y. K. Su, N. Y. Li, K. J. Gan, J. Appl. Phys. 68 68 68 68 , 6383 (1990); Y. K. Su, S. M. Chen, J. Appl. Phys. 73 73 73 73 , 8349 (1993); S. K. Haywood, A. B. Henriques, N. J. Mason, R. J. Nicholas, P. J. Walker, Semicond. Sci. Technol. 3 3 3 3 , 315 (1988)Google Scholar
  18. 18.
    G. C. Young; W. W. Anderson, L. B. Anderson, Trans. Electron Dev. IEEE, 24 24 24 24 , 492 (1977).CrossRefGoogle Scholar
  19. 19.
    R. L. Gordon, V. I. Neeley, H. R. Curtin, Proc. IEEE 54 54 54 54 , 2014 (1966).CrossRefGoogle Scholar
  20. 20.
    P. K. Weimer, Proc. IRE 50 50 50 50 , 1462 (1962).CrossRefGoogle Scholar
  21. 21.
    M. J. Lee, S. W. Wright, C. P. Judge, P. Y. Cheung, Display Research Conference, International Conference Record, 211 (1991).Google Scholar
  22. 22.
    J. M. Thornton, J. Mol. Biol. 151 151 151 151 , 261 (1981); T. E. Creighton, Methods Enzymol. 131 131 131 131 , 83 (1986); T. E. Creighton, Bio Essays 8 8 8 8 , 57 (1988).CrossRefGoogle Scholar
  23. 23.
    V. J. Hruby, Life Sciences 31 31 31 31 ,189 (1982); V. J. Hruby, F. Al-Obeidi, W. Kazmierski, Biochem. J. 268 268 268 268 , 249 (1990).CrossRefGoogle Scholar
  24. 24.
    R. Wetzel, Trends Biochem. Sci. 12 12 12 12 , 478 (1987).CrossRefGoogle Scholar
  25. 25.
    T. Kimura, R. Matsueda, Y. Nakagawa, E. T. Kaiser, Anal Biochem. 122 122 122 122 , 274 (1982).CrossRefGoogle Scholar
  26. 26.
    D. Andreu, F. Albericio, N. A. Sole, M. C. Munson, M. Ferrer, G. Barany, Methods in Molecular Biology, 35 Peptide Synthesis Protocols, Ed. M. W. Pennington, B. M. Dunn, (Humana Press Inc., USA, 1994).Google Scholar
  27. 27.
    H. J. Goldsmid, R. W. Douglas, Brit. J. Appl. Phys. 5 5 5 5 , 386 (1954).CrossRefGoogle Scholar
  28. 28.
    F. D. Rosi, B. Abeles, R. V. Jensen, J. Phys. Chem. Solids, 10 10 10 10 , 191 (1959).CrossRefGoogle Scholar
  29. 29.
    F. Smektala, C. Quemard, V. Couderc, A. Barthélémy, J. Non-Cryst. Solids 274 274 274 274 232 (2000); G. Boudebs, F. Sanchez, J. Troles, F. Smektala, Opt. Comm. 199 199 199 199 425 (2001); J. M. Harbold, F. O. Iday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, I. D. Aggarwal, Opt. Lett. 27 27 27 27 119 (2002); J. M. Harbold, F. O. Ilday, F. W. Wise, B. Aitken, IEEE Photon. Technol. Lett. 14 14 14 14 822 (2002); V. T. Plaksiy, V. M. Svetlichniy, Symposium on Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001. The Fourth International Kharkov 1 1 1 1 , 331 (2001); Z. Helin, D. M. Rowe, S. G. K. Williams, 2001. Proc. XX International Conference on Thermoelectrics, 314 (2001).CrossRefGoogle Scholar
  30. 30.
    B. R. Nag, Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors , (Springer Verlag, Germany, 1980); E. O. Kane, In Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals , Vol. 1 1 1 1 , Ed. By R. K. Willardson, A. C. Beer (Academic Press, USA, 1966) p. 75.CrossRefGoogle Scholar
  31. 31.
    G. E. Stillman, C. M. Wolfe, J. O. Dimmock, in Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals Semiconductors and Semimetals , Ed. R. K. Willardon, A. C. Beer 12, p. 169 (Academic Press, IV,V, USA, 1977).Google Scholar
  32. 32.
    D. J. Newson, A. Karobe, Semiconductor. Sci. Tech. 3 3 3 3 , 786 (1988).CrossRefGoogle Scholar
  33. 33.
    U. Rossler, Solid State Commun. 49 49 49 49 , 943 (1984).CrossRefGoogle Scholar
  34. 34.
    E. D. Palik, G. S. Picus, S. Teither, R. E. Wallis, Phys. Rev. 122 122 122 122 , 475 (1961).CrossRefGoogle Scholar
  35. 35.
    E. J. Johnson, D. H. Dickey, Phys. Rev. 1 1 1 1 , 2676 (1970).CrossRefGoogle Scholar
  36. 36.
    V. G. Agafonov, P. M. Valov, B. S. Ryvkin, I. D. Yarashetskin, Sov. Phys. Semiconduct. 12 12 12 12 , 1182 (1978).Google Scholar
  37. 37.
    M. Cardona, W. Paul, H. Brooks, Helv, Acta Phys. 33 33 33 33 , 329 (1960); A. F. Gibson, In: Proceeding of International School of Physics “ENRICO FERMI” course XIII Proceeding of International School of Physics “ENRICO FERMI” course XIII Proceeding of International School of Physics “ENRICO FERMI” course XIII Proceeding of International School of Physics “ENRICO FERMI” course XIII , Ed. R. A. Smith, p. 171 (Academic Press, USA, 1963).Google Scholar
  38. 38.
    C. C. Wang, N. W. Ressler, Phys. Rev. 2 2 2 2 , 1827 (1970).CrossRefGoogle Scholar
  39. 39.
    J. Bouat, J. C. Thuillier, Surface Sci. 73 73 73 73 , 528 (1978).CrossRefGoogle Scholar
  40. 40.
    M. V. Ortenberg, K. J. Button, Phys. Rev. B 16 16 16 16 , 2618 (1977).CrossRefGoogle Scholar
  41. 41.
    H. Ushio, T. Dau, Y. Uemura, J. Phys. Soc. Jap. 33 33 33 33 , 1551 (1972).CrossRefGoogle Scholar
  42. 42.
    V. I. Ivanov-Omskii, A. Sh. Mekhtisev, S. A. Rustambekova, E. N. Ukraintsev, Phys. Stat. Sol. (b) 119 119 119 119 , 159 (1983).CrossRefGoogle Scholar
  43. 43.
    L. V. Vassilev, Phys. Stat. Sol. (b), 121 121 121 121 , 203 (1984).CrossRefGoogle Scholar
  44. 44.
    D. G. Seiler, W. M. Beeker, K. M. Roth, Phys. Rev. 1 1 1 1 , 764 (1970).Google Scholar
  45. 45.
    P. C. Mathur, S. Jain, Phys. Rev. 19 19 19 19 , 1359 (1979).Google Scholar
  46. 46.
    H. I. Zhang, Phys. Rev. B 1 1 1 1 , 3450 (1970).CrossRefGoogle Scholar
  47. 47.
    J. W. McClure, K. H. Choi, Solid State Comm. 21 21 21 21 , 1015 (1977).CrossRefGoogle Scholar
  48. 48.
    S. Takaoka, H. Kawamura, K. Murase, S. Takano, Phys. Rev. B B B B , 13 13 13 13 , 1928 (1976).Google Scholar
  49. 49.
    M. H. Cohen, Phys. Rev. 121 121 121 121 , 387 (1961).CrossRefGoogle Scholar
  50. 50.
    B. Lax, J. G. Mavroides, H. J. Ziegeer, R. Keyes, J. Phys. Rev. Lett. 5 5 5 5 , 241 (1960).CrossRefGoogle Scholar
  51. 51.
    J. O. Dimmock, In: The Physics of Semimetals and Narrowgap Semiconductors The Physics of Semimetals and Narrowgap Semiconductors The Physics of Semimetals and Narrowgap Semiconductors The Physics of Semimetals and Narrowgap Semiconductors , Ed. D. L. Carter, R. T. Bates (Pergamon Press, UK, 1971).Google Scholar
  52. 52.
    E. Bangert, P. Kastner, Phys. Stat. Sol. (b), 61 61 61 61 , 503 (1974).CrossRefGoogle Scholar
  53. 53.
    G. M. T. Foley, P. N. Langenberg, Phys. Rev. B, 15 15 15 15 , 4850 (1977).CrossRefGoogle Scholar
  54. 54.
    Y. Yamada, J. Phys. Jpn. 35 35 35 35 , 1600 (1973); M. Singh, P. R. Wallace, S. D. Jog, E. Arushanov, J. Phys. Chem. Solids 45 45 45 45 , 409 (1984).CrossRefGoogle Scholar
  55. 55.
    G. P. Chuiko, Sov. Phys. Semi. 19 19 19 19 , 1381 (1985).Google Scholar
  56. 56.
    M. Stordeur, W. Kuhnberger, Phys. Stat. Sol. (b), 69 69 69 69 , 377 (1975); D. R. Lovett, Semimetals and Narrow-Bandgap Semiconductor Semimetals and Narrow-Bandgap Semiconductor Semimetals and Narrow-Bandgap Semiconductor Semimetals and Narrow-Bandgap Semiconductor , (Pion Limited, UK, 1977); H. Köhler, Phys. Stat. Sol. (b), 74 74 74 74 , 591 (1976).CrossRefGoogle Scholar
  57. 57.
    J. B. Ketterson, Phys. Rev. 129 129 129 129 , 18 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kamakhya Prasad Ghatak
    • 1
  • Debashis De
    • 2
  • Sitangshu Bhattacharya
    • 3
  1. 1.Department of Electronic ScienceThe University of CalcuttaKolkataIndia
  2. 2.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia
  3. 3.Nano Scale Device Research LaboratoryCentre for Electronics Design and Technology Indian Institute of ScienceBangaloreIndia

Personalised recommendations