Advertisement

Fundamentals of Photoemission from Wide Gap Materials

  • Kamakhya Prasad Ghatak
  • Debashis De
  • Sitangshu Bhattacharya
Chapter
Part of the Nanostructure Science and Technology book series (NST)

It is well known that the Einstein’s photoelectric effect occupies a singular position in the whole arena of materials science and related disciplines in general together with the fact that the photoemission from the electronic materials is also a vital physical phenomenon from the viewpoint of modern optoelectronics and photoemission spectroscopy [1]. The classical equation of the photo-emitted current density is [2] \(J = \left[ {{{4\pi em^\ast g_v \left( {k_B T} \right)^2 } \left/\right. {h^3 }}} \right]\exp \left[ {{{\left( {h\nu - \phi } \right)} \left/\right. {\left( {k_B T} \right)}}} \right]\), where e e e e , \(m^\ast\), g g g g v v v v , k k k k B B B B , T T T T , h h h h , \(h\upsilon \) and \(\phi \) are the electron charge, effective electron mass at the edge of the conduction band, valley degeneracy, the Boltzmann constant, temperature, the Planck’s constant, incident photon energy along z z z z -axis and work function, respectively. The aforementioned equation is valid for both the charge carriers, and in this conventional form it appears that the photoemission changes with the effective mass, temperature, work function, and the incident photon energy, respectively. This relation holds only under the condition of carrier nondegeneracy.

Keywords

Fermi Energy Landau Level Incident Photon Energy Bulk Specimen Bulk Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Cardona, L. Ley, Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics , vols. 26 26 26 26 , 27 27 27 27 , (Springer-Verlag, Germany, 1978); D. J. Lockwood, Light Light Light Light Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices , vol. 2 2 2 2 , ed H. S. Nalwa (Academic Press, San Diego, USA, 2001).Google Scholar
  2. 2.
    R. K. Pathria, Statistical Mechanics, Statistical Mechanics, Statistical Mechanics, Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996).Google Scholar
  3. 3.
    K. P. Ghatak, S. Bhattacharya, K. M. Singh, S. Choudhury, S. Pahari, Physica B 403 403 403 403 , 2116 (2008).CrossRefGoogle Scholar
  4. 4.
    K. P. Ghatak, S. N. Biswas, in Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Nonlinear Optics II, USA, 1991, vol. 1409 1409 1409 1409 , p. 28.CrossRefGoogle Scholar
  5. 5.
    K. P. Ghatak, SPIE, Process Module Metrology, USA, 1992, vol. 1594 1594 1594 1594 , p. 110; K. P. Ghatak, SPIE, International Conference on the Application and Theory of Periodic Structures, 1991, vol. 1545 1545 1545 1545 , p. 282, (1991).CrossRefGoogle Scholar
  6. 6.
    K. P. Ghatak, M. Mondal, Solid State Electron. 31 31 31 31 , 1561 (1988).CrossRefGoogle Scholar
  7. 7.
    K. P. Ghatak, M. Mondal, J. Appl. Phys. 69 69 69 69 , 1666 (1991).CrossRefGoogle Scholar
  8. 8.
    K. P. Ghatak, D. Bhattacharyya, B. Nag, S. N. Biswas, J. Nonlin. Opt. Quant. Opt. 13 13 13 13 , 267 (1995).Google Scholar
  9. 9.
    M. Mondal, S. Banik, K. P. Ghatak, J. Low Temp. Phys. 74, 74, 74, 74, 423 (1989).CrossRefGoogle Scholar
  10. 10.
    B. Mitra, A. Ghoshal, K. P. Ghatak, Phys. Stat. Sol. (b) 150 150 150 150 , K67 (1988).CrossRefGoogle Scholar
  11. 11.
    B. Mitra, K. P. Ghatak, Phys. Scr. 40 40 40 40 , 776 (1989).CrossRefGoogle Scholar
  12. 12.
    K. P. Ghatak, M. Mondal, S. N. Biswas, J. Appl. Phys. 68 68 68 68 , 3032 (1990).CrossRefGoogle Scholar
  13. 13.
    K. P. Ghatak, S. N. Biswas, Nonlin. Opt. 4 4 4 4 , 39 (1993).Google Scholar
  14. 14.
    K. P. Ghatak, S. N. Biswas, SPIE, Growth and Characterization of Materials for Infrared Detectors and Nonlinear Optical Switches, USA, vol. 1484 1484 1484 1484 , p. 136 (1991).CrossRefGoogle Scholar
  15. 15.
    K. P. Ghatak, B. De, Polymeric materials for Integrated Optics and Information Storage, Materials Research Society (MRS) Symposium Proceedings, MRS Spring Meeting, vol. 228 228 228 228 , p. 237 (1991).Google Scholar
  16. 16.
    K. P. Ghatak, B. Nag, G. Majumdar, Strained Layer Expitaxy – Materials, Processing, and Device Applications, MRS Symposium Proceedings, MRS Spring Meeting, vol. 379 379 379 379 , p. 85 (1995).Google Scholar
  17. 17.
    K. P. Ghatak, SPIE, High Speed Phenomena in Photonic Materials and Optical Bistability, USA, vol. 1280 1280 1280 1280 , p. 53 (1990).CrossRefGoogle Scholar
  18. 18.
    K. P. Ghatak, Long Wave Length Semiconductor Devices, Materials and Processes Symposium Proceedings, MRS Symposium Proceedings, MRS Spring Meeting, vol. 216 216 216 216 , p. 469 (1990).Google Scholar
  19. 19.
    K. P. Ghatak, A. Ghoshal, S. Bhattacharyya, SPIE, Nonlinear Optical Materials and Devices for Photonic Switching, USA, vol. 1216 1216 1216 1216 , p. 282 (1990).CrossRefGoogle Scholar
  20. 20.
    K. P. Ghatak, SPIE, Nonlinear Optics III, USA, vol. 1626 1626 1626 1626 , p. 115 (1992).CrossRefGoogle Scholar
  21. 21.
    K. P. Ghatak, A. Ghoshal, B. De, SPIE, Optoelectronic Devices and Applications, USA, vol. 1338 1338 1338 1338 , p. 111 (1990).CrossRefGoogle Scholar
  22. 22.
    R. Houdré, C. Hermann, G. Lampel, P. M. Frijlink, Surface Sci. 168, 168, 168, 168, 538 (1986).CrossRefGoogle Scholar
  23. 23.
    T. C. Chiang, R. Ludeke, D. E. Eastman, Phys. Rev. B. 25, 25, 25, 25, 6518 (1982).CrossRefGoogle Scholar
  24. 24.
    S. P. Svensson, J. Kanski, T. G. Andersson, P. O. Nilsson, J. Vacuum Sci. Technol. B 2, 2, 2, 2, 235 (1984); S. F. Alvarado, F. Ciccacci, M. Campagna, Appl. Phys. Letts. 39 39 39 39 , 615 (1981).CrossRefGoogle Scholar
  25. 25.
    C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b) 140, 140, 140, 140, K7 (1987).CrossRefGoogle Scholar
  26. 26.
    C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b) 141 141 141 141 , K35 (1987).CrossRefGoogle Scholar
  27. 27.
    N. R. Das, K. K. Ghosh, D. Ghoshal, Phys. Stat. Sol. (b) 197 197 197 197 , 97 (1996).CrossRefGoogle Scholar
  28. 28.
    C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b), 144 144 144 144 , K13, (1987).CrossRefGoogle Scholar
  29. 29.
    N. R. Das, A. N. Chakravarti, Phys. Stat. Sol. (b) 176 176 176 176 , 335 (1993).CrossRefGoogle Scholar
  30. 30.
    S. Sen, N. R. Das and A. N. Chakravarti, J. Phys: Conden. Mat. 19 19 19 19 , 186205 (2007); N. R. Das, S. Ghosh, A. N. Chakravarti, Phys. Stat. Sol. (b) 174 174 174 174 , 45 (1992).CrossRefGoogle Scholar
  31. 31.
    A. B. Maity, C. Majumdar, A. N. Chakravarti, Phys. Stat. Sol. (b) 144 144 144 144 , K93, (1987).CrossRefGoogle Scholar
  32. 32.
    A. B. Maity, C. Majumdar, A. N. Chakravarti, Phys. Stat. Sol. (b) 149 149 149 149 , 565 (1988).CrossRefGoogle Scholar
  33. 33.
    N. R. Das, A. N. Chakravarti, Phys. Stat. Sol. (b) 169 169 169 169 , 97 (1992).CrossRefGoogle Scholar
  34. 34.
    A. Modinos, Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy (Plenum Press, USA, 1984).Google Scholar
  35. 35.
    A. V. D. Ziel, Solid State Physical Electronics Solid State Physical Electronics Solid State Physical Electronics Solid State Physical Electronics , (Prentice Hall, Inc. USA, 1957).Google Scholar
  36. 36.
    B. R. Nag, Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors , Springer Series in Soild-State Science, Vol. II (Springer Verlag, Germany, 1980).Google Scholar
  37. 37.
    L. Landau, E. M. Liftshitz, Statistical Physics, Part-II, Statistical Physics, Part-II, Statistical Physics, Part-II, Statistical Physics, Part-II, (Pergamon Press, UK, 1980).Google Scholar
  38. 38.
    W. Zawadzki, B. Lax, Phys. Rev. Lett. 16 16 16 16 , 1001 (1966).CrossRefGoogle Scholar
  39. 39.
    K. P. Ghatak, M. Mondal, Zeit. fur Phys. B 69 69 69 69 , 471 (1988); M. Mondal, N. Chattopadhyay, K. P. Ghatak, J. Low Temp. Phys. 66 66 66 66 , 131 (1987).CrossRefGoogle Scholar
  40. 40.
    M. Mondal, K. P. Ghatak, Phys. Letts. A 131 131 131 131 , 529 (1988); B. Mitra, K. P. Ghatak, Phys. Letts. A 137 137 137 137 , 413 (1989).CrossRefGoogle Scholar
  41. 41.
    M. J. Harrison, Phys. Rev. A 29 29 29 29 , 2272 (1984).CrossRefGoogle Scholar
  42. 42.
    J. Zak, W. Zawadzki, Phys. Rev. 145 145 145 145 , 536 (1966); W. Zawadzki, Q. H. F. Vrehen, B. Lax, Phys. Rev. 148 148 148 148 , 849 (1966); Q. H. F. Vrehen, W. Zawadzki, M. Reine, Phys. Rev. 158 158 158 158 , 702 (1967); M. H. Weiler, W. Zawadzki, B. Lax, Phys. Rev. 163 163 163 163 , 733 (1967).CrossRefGoogle Scholar
  43. 43.
    P. M. Petroff, A. C. Gossard, W. Wiegmann, Appl. Phys. Letts. 45 45 45 45 , 620 (1984); J. M. Gaines, P. M. Petroff, H. Kroemar, R. J. Simes, R. S. Geels, J. H. English, J. Vac. Sci. Tech. B 6 6 6 6 , 1378 (1988)CrossRefGoogle Scholar
  44. 44.
    J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, J. H. English, Appl. Phys. Letts. 49 49 49 49 , 1275 (1986).CrossRefGoogle Scholar
  45. 45.
    T. Fukui, H. Saito, Appl. Phys. Letts. 50 50 50 50 , 824 (1987).CrossRefGoogle Scholar
  46. 46.
    H. Sasaki, Jpn. J. Appl. Phys. 19 19 19 19 , 94 (1980).Google Scholar
  47. 47.
    P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann, Appl. Phys. Lett. 41 41 41 41 , 635 (1982).CrossRefGoogle Scholar
  48. 48.
    H. Temkin, G. J. Dolan, M. B. Panish, S. N. G. Chu, Appl. Phys. Lett. 50 50 50 50 , 413 (1988); B. I. Miller, A. Shahar, U. Koren, P. J. Corvini, Appl. Phys. Lett. 54 54 54 54 , 188 (1989).CrossRefGoogle Scholar
  49. 49.
    L. L. Chang, H. Sakaki, C. A. Chang, L. Esaki, Phys. Rev. Letts. 38 38 38 38 , 1489 (1977); K. Lee, M. S. Shur, J. J. Drummond, H. Morkoc, IEEE Trans. Electron. Dev. 30 30 30 30 , 207 (1983).CrossRefGoogle Scholar
  50. 50.
    N. T. Linch, Festkorperprobleme 23 23 23 23 , 227 (1985).Google Scholar
  51. 51.
    D. R. Scifres, C. Lindstrom, R. D. Burnham, W. Streifer, T. L. Paoli, Electron. Letts. 19 19 19 19 , 169 (1983).CrossRefGoogle Scholar
  52. 52.
    P. M. Solomon, Proc. IEEE, 70, 489 (1982); T. E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49 49 49 49 , 519 (1986).CrossRefGoogle Scholar
  53. 53.
    H. Heiblum, D. C. Thomas, C. M. Knoedler, M. I. Nathan, Appl. Phys. Letts. 47 47 47 47 , 1105 (1985).CrossRefGoogle Scholar
  54. 54.
    O. Aina, M. Mattingly, F. Y. Juan, P. K. Bhattacharya, Appl. Phys. Letts. 50 50 50 50 , 43 (1987).CrossRefGoogle Scholar
  55. 55.
    I. Suemune, L. A. Coldren, IEEE J. Quant. Electron. 24 24 24 24 , 1778 (1988).CrossRefGoogle Scholar
  56. 56.
    D. Miller, D. Chemla, T. Damen, T. Wood, C. Burrus, A. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21 21 21 21 , 1462 (1985).CrossRefGoogle Scholar
  57. 57.
    F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54 54 54 54 , 350 (1980).CrossRefGoogle Scholar
  58. 58.
    C. S. Lent, D. J. Kirkner, J. Appl. Phys. 67 67 67 67 , 6353 (1990).CrossRefGoogle Scholar
  59. 59.
    C. S. Kim, A. M. Satanin, Y. S. Joe, R. M. Cosby, Phys. Rev. B, 60 60 60 60 , 10962 (1999).CrossRefGoogle Scholar
  60. 60.
    S. Midgley, J. B. Wang, Phys. Rev. B 64 64 64 64 , 153304 (2001).CrossRefGoogle Scholar
  61. 61.
    T. Sugaya, J. P. Bird, M. Ogura, Y. Sugiyama, D. K. Ferry, K. Y. Jang, Appl. Phys. Lett. 80 80 80 80 , 434 (2002).CrossRefGoogle Scholar
  62. 62.
    B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N. Pfeiffer, K. N. West, Appl. Phys. Lett. 72 72 72 72 , 3506 (1998).CrossRefGoogle Scholar
  63. 63.
    C. Dekker, Physics Today, 52 52 52 52 , 22 (1999).CrossRefGoogle Scholar
  64. 64.
    A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, K. W. West, Phys. Rev. Lett. 77 77 77 77 , 4612 (1996).CrossRefGoogle Scholar
  65. 65.
    Y. Hayamizu, M. Yoshita, S. Watanabe, H. Akiyama, L. N. Pfeiffer, K. W. West, Appl. Phys. Lett. 81 81 81 81 , 4937 (2002).CrossRefGoogle Scholar
  66. 66.
    S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280 280 280 280 , 1744 (1998).CrossRefGoogle Scholar
  67. 67.
    I. Kamiya, I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka, H. Sakaki, Physica E 13 13 13 13 , 131 (2002).Google Scholar
  68. 68.
    A. K. Geim, P. C. Main, N. La Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, M. A. Pate, Phys. Rev. Lett. 72 72 72 72 , 2061 (1994).CrossRefGoogle Scholar
  69. 69.
    A. S. Melnikov, V. M. Vinokur, Nature 415 415 415 415 , 60 (2002).CrossRefGoogle Scholar
  70. 70.
    K. Schwab, E. A. Henriksen, J. M. Worlock, M. L. Roukes, Nature 404 404 404 404 , 974 (2000).CrossRefGoogle Scholar
  71. 71.
    L. Kouwenhoven, Nature 403 403 403 403 , 374 (2000).CrossRefGoogle Scholar
  72. 72.
    S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, H. Hirai, Nature 403 403 403 403 , 405 (2000).CrossRefGoogle Scholar
  73. 73.
    E. Paspalakis, Z. Kis, E. Voutsinas, A. F. Terzis, Phys. Rev. B 69 69 69 69 , 155316 (2004).CrossRefGoogle Scholar
  74. 74.
    J. H. Jefferson, M. Fearn, D. L. J. Tipton, T. P. Spiller, Phys. Rev. A 66 66 66 66 , 042328 (2002).CrossRefGoogle Scholar
  75. 75.
    J. Appenzeller, Ch. Schroer, Th. Schapers, A. v. d. Hart, A. Fröster, B. Lengeler, H. Lüth, Phys. Rev. B 53 53 53 53 , 9959 (1996).CrossRefGoogle Scholar
  76. 76.
    J. Appenzeller, C. Schroer, J. Appl. Phys. 87 87 87 87 , 3165 (2000).CrossRefGoogle Scholar
  77. 77.
    P. Debray, O. E. Raichev, M. Rahman, R. Akis, W. C. Mitchel, Appl. Phys. Lett. 74 74 74 74 , 768 (1999).CrossRefGoogle Scholar
  78. 78.
    P. M. Solomon, Proc. IEEE 70, 489 (1982); T. E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49 49 49 49 , 519 (1986).CrossRefGoogle Scholar
  79. 79.
    D. Kasemset, C. S. Hong, N. B. Patel, P. D. Dapkus, Appl. Phys. Letts. 41 41 41 41 , 912 (1982).CrossRefGoogle Scholar
  80. 80.
    K. Woodbridge, P. Blood, E. D. Pletcher, P. J. Hulyer, Appl. Phys. Lett. 45 45 45 45 , 16 (1984).CrossRefGoogle Scholar
  81. 81.
    D. Bimberg, M. Grundmann, N. N. Ledentsov, Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures (John Wiley and Sons, USA, 1999)Google Scholar
  82. 82.
    T. Tsuboi, Phys. Stat. Sol. (b), 146 146 146 146 , K11 (1988) (and the references cited therein).CrossRefGoogle Scholar
  83. 83.
    K. P. Ghatak, S. Bhattacharya, S. Pahari, D. De, S. Ghosh, M. Mitra, Annalen der Physik, 17 17 17 17 , 195 (2008).CrossRefGoogle Scholar
  84. 84.
    J. S. Blakemore, Semiconductor Statistics Semiconductor Statistics Semiconductor Statistics Semiconductor Statistics (Dover Publications, USA, 1987).Google Scholar
  85. 85.
    W. Zawadzki, In: Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices , Edited by G. Bauer, F. Kuchar, H. Heinrich (Springer-Verlag, Germany, 1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kamakhya Prasad Ghatak
    • 1
  • Debashis De
    • 2
  • Sitangshu Bhattacharya
    • 3
  1. 1.Department of Electronic ScienceThe University of CalcuttaKolkataIndia
  2. 2.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia
  3. 3.Nano Scale Device Research LaboratoryCentre for Electronics Design and Technology Indian Institute of ScienceBangaloreIndia

Personalised recommendations