Skip to main content

Fundamentals of Photoemission from Wide Gap Materials

  • Chapter
  • First Online:
  • 626 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

It is well known that the Einstein’s photoelectric effect occupies a singular position in the whole arena of materials science and related disciplines in general together with the fact that the photoemission from the electronic materials is also a vital physical phenomenon from the viewpoint of modern optoelectronics and photoemission spectroscopy [1]. The classical equation of the photo-emitted current density is [2] \(J = \left[ {{{4\pi em^\ast g_v \left( {k_B T} \right)^2 } \left/\right. {h^3 }}} \right]\exp \left[ {{{\left( {h\nu - \phi } \right)} \left/\right. {\left( {k_B T} \right)}}} \right]\), where e e e e , \(m^\ast\), g g g g v v v v , k k k k B B B B , T T T T , h h h h , \(h\upsilon \) and \(\phi \) are the electron charge, effective electron mass at the edge of the conduction band, valley degeneracy, the Boltzmann constant, temperature, the Planck’s constant, incident photon energy along z z z z -axis and work function, respectively. The aforementioned equation is valid for both the charge carriers, and in this conventional form it appears that the photoemission changes with the effective mass, temperature, work function, and the incident photon energy, respectively. This relation holds only under the condition of carrier nondegeneracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Cardona, L. Ley, Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics Photoemission in Solids 1 and 2, Topics in Applied Physics , vols. 26 26 26 26 , 27 27 27 27 , (Springer-Verlag, Germany, 1978); D. J. Lockwood, Light Light Light Light Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices Emission in Silicon in Silicon Based Materials and Devices , vol. 2 2 2 2 , ed H. S. Nalwa (Academic Press, San Diego, USA, 2001).

    Google Scholar 

  2. R. K. Pathria, Statistical Mechanics, Statistical Mechanics, Statistical Mechanics, Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996).

    Google Scholar 

  3. K. P. Ghatak, S. Bhattacharya, K. M. Singh, S. Choudhury, S. Pahari, Physica B 403 403 403 403 , 2116 (2008).

    Article  CAS  Google Scholar 

  4. K. P. Ghatak, S. N. Biswas, in Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Proceedings of the Society of Photo-Optical and Instrumentation Engineers (SPIE), Nonlinear Optics II, USA, 1991, vol. 1409 1409 1409 1409 , p. 28.

    Article  CAS  Google Scholar 

  5. K. P. Ghatak, SPIE, Process Module Metrology, USA, 1992, vol. 1594 1594 1594 1594 , p. 110; K. P. Ghatak, SPIE, International Conference on the Application and Theory of Periodic Structures, 1991, vol. 1545 1545 1545 1545 , p. 282, (1991).

    Article  CAS  Google Scholar 

  6. K. P. Ghatak, M. Mondal, Solid State Electron. 31 31 31 31 , 1561 (1988).

    Article  CAS  Google Scholar 

  7. K. P. Ghatak, M. Mondal, J. Appl. Phys. 69 69 69 69 , 1666 (1991).

    Article  CAS  Google Scholar 

  8. K. P. Ghatak, D. Bhattacharyya, B. Nag, S. N. Biswas, J. Nonlin. Opt. Quant. Opt. 13 13 13 13 , 267 (1995).

    CAS  Google Scholar 

  9. M. Mondal, S. Banik, K. P. Ghatak, J. Low Temp. Phys. 74, 74, 74, 74, 423 (1989).

    Article  CAS  Google Scholar 

  10. B. Mitra, A. Ghoshal, K. P. Ghatak, Phys. Stat. Sol. (b) 150 150 150 150 , K67 (1988).

    Article  Google Scholar 

  11. B. Mitra, K. P. Ghatak, Phys. Scr. 40 40 40 40 , 776 (1989).

    Article  CAS  Google Scholar 

  12. K. P. Ghatak, M. Mondal, S. N. Biswas, J. Appl. Phys. 68 68 68 68 , 3032 (1990).

    Article  CAS  Google Scholar 

  13. K. P. Ghatak, S. N. Biswas, Nonlin. Opt. 4 4 4 4 , 39 (1993).

    CAS  Google Scholar 

  14. K. P. Ghatak, S. N. Biswas, SPIE, Growth and Characterization of Materials for Infrared Detectors and Nonlinear Optical Switches, USA, vol. 1484 1484 1484 1484 , p. 136 (1991).

    Article  CAS  Google Scholar 

  15. K. P. Ghatak, B. De, Polymeric materials for Integrated Optics and Information Storage, Materials Research Society (MRS) Symposium Proceedings, MRS Spring Meeting, vol. 228 228 228 228 , p. 237 (1991).

    Google Scholar 

  16. K. P. Ghatak, B. Nag, G. Majumdar, Strained Layer Expitaxy – Materials, Processing, and Device Applications, MRS Symposium Proceedings, MRS Spring Meeting, vol. 379 379 379 379 , p. 85 (1995).

    CAS  Google Scholar 

  17. K. P. Ghatak, SPIE, High Speed Phenomena in Photonic Materials and Optical Bistability, USA, vol. 1280 1280 1280 1280 , p. 53 (1990).

    Article  CAS  Google Scholar 

  18. K. P. Ghatak, Long Wave Length Semiconductor Devices, Materials and Processes Symposium Proceedings, MRS Symposium Proceedings, MRS Spring Meeting, vol. 216 216 216 216 , p. 469 (1990).

    Google Scholar 

  19. K. P. Ghatak, A. Ghoshal, S. Bhattacharyya, SPIE, Nonlinear Optical Materials and Devices for Photonic Switching, USA, vol. 1216 1216 1216 1216 , p. 282 (1990).

    Article  CAS  Google Scholar 

  20. K. P. Ghatak, SPIE, Nonlinear Optics III, USA, vol. 1626 1626 1626 1626 , p. 115 (1992).

    Article  CAS  Google Scholar 

  21. K. P. Ghatak, A. Ghoshal, B. De, SPIE, Optoelectronic Devices and Applications, USA, vol. 1338 1338 1338 1338 , p. 111 (1990).

    Article  CAS  Google Scholar 

  22. R. Houdré, C. Hermann, G. Lampel, P. M. Frijlink, Surface Sci. 168, 168, 168, 168, 538 (1986).

    Article  Google Scholar 

  23. T. C. Chiang, R. Ludeke, D. E. Eastman, Phys. Rev. B. 25, 25, 25, 25, 6518 (1982).

    Article  CAS  Google Scholar 

  24. S. P. Svensson, J. Kanski, T. G. Andersson, P. O. Nilsson, J. Vacuum Sci. Technol. B 2, 2, 2, 2, 235 (1984); S. F. Alvarado, F. Ciccacci, M. Campagna, Appl. Phys. Letts. 39 39 39 39 , 615 (1981).

    Article  CAS  Google Scholar 

  25. C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b) 140, 140, 140, 140, K7 (1987).

    Article  Google Scholar 

  26. C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b) 141 141 141 141 , K35 (1987).

    Article  Google Scholar 

  27. N. R. Das, K. K. Ghosh, D. Ghoshal, Phys. Stat. Sol. (b) 197 197 197 197 , 97 (1996).

    Article  CAS  Google Scholar 

  28. C. Majumdar, A. B. Maity, A. N. Chakravarti, Phys. Stat. Sol. (b), 144 144 144 144 , K13, (1987).

    Article  Google Scholar 

  29. N. R. Das, A. N. Chakravarti, Phys. Stat. Sol. (b) 176 176 176 176 , 335 (1993).

    Article  CAS  Google Scholar 

  30. S. Sen, N. R. Das and A. N. Chakravarti, J. Phys: Conden. Mat. 19 19 19 19 , 186205 (2007); N. R. Das, S. Ghosh, A. N. Chakravarti, Phys. Stat. Sol. (b) 174 174 174 174 , 45 (1992).

    Article  Google Scholar 

  31. A. B. Maity, C. Majumdar, A. N. Chakravarti, Phys. Stat. Sol. (b) 144 144 144 144 , K93, (1987).

    Article  CAS  Google Scholar 

  32. A. B. Maity, C. Majumdar, A. N. Chakravarti, Phys. Stat. Sol. (b) 149 149 149 149 , 565 (1988).

    Article  CAS  Google Scholar 

  33. N. R. Das, A. N. Chakravarti, Phys. Stat. Sol. (b) 169 169 169 169 , 97 (1992).

    Article  CAS  Google Scholar 

  34. A. Modinos, Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy Field, Thermionic and Secondary Electron Emission Spectroscopy (Plenum Press, USA, 1984).

    Google Scholar 

  35. A. V. D. Ziel, Solid State Physical Electronics Solid State Physical Electronics Solid State Physical Electronics Solid State Physical Electronics , (Prentice Hall, Inc. USA, 1957).

    Google Scholar 

  36. B. R. Nag, Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors Electron Transport in Compound Semiconductors , Springer Series in Soild-State Science, Vol. II (Springer Verlag, Germany, 1980).

    Google Scholar 

  37. L. Landau, E. M. Liftshitz, Statistical Physics, Part-II, Statistical Physics, Part-II, Statistical Physics, Part-II, Statistical Physics, Part-II, (Pergamon Press, UK, 1980).

    Google Scholar 

  38. W. Zawadzki, B. Lax, Phys. Rev. Lett. 16 16 16 16 , 1001 (1966).

    Article  CAS  Google Scholar 

  39. K. P. Ghatak, M. Mondal, Zeit. fur Phys. B 69 69 69 69 , 471 (1988); M. Mondal, N. Chattopadhyay, K. P. Ghatak, J. Low Temp. Phys. 66 66 66 66 , 131 (1987).

    Article  Google Scholar 

  40. M. Mondal, K. P. Ghatak, Phys. Letts. A 131 131 131 131 , 529 (1988); B. Mitra, K. P. Ghatak, Phys. Letts. A 137 137 137 137 , 413 (1989).

    Article  Google Scholar 

  41. M. J. Harrison, Phys. Rev. A 29 29 29 29 , 2272 (1984).

    Article  Google Scholar 

  42. J. Zak, W. Zawadzki, Phys. Rev. 145 145 145 145 , 536 (1966); W. Zawadzki, Q. H. F. Vrehen, B. Lax, Phys. Rev. 148 148 148 148 , 849 (1966); Q. H. F. Vrehen, W. Zawadzki, M. Reine, Phys. Rev. 158 158 158 158 , 702 (1967); M. H. Weiler, W. Zawadzki, B. Lax, Phys. Rev. 163 163 163 163 , 733 (1967).

    Article  CAS  Google Scholar 

  43. P. M. Petroff, A. C. Gossard, W. Wiegmann, Appl. Phys. Letts. 45 45 45 45 , 620 (1984); J. M. Gaines, P. M. Petroff, H. Kroemar, R. J. Simes, R. S. Geels, J. H. English, J. Vac. Sci. Tech. B 6 6 6 6 , 1378 (1988)

    Article  CAS  Google Scholar 

  44. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, J. H. English, Appl. Phys. Letts. 49 49 49 49 , 1275 (1986).

    Article  CAS  Google Scholar 

  45. T. Fukui, H. Saito, Appl. Phys. Letts. 50 50 50 50 , 824 (1987).

    Article  CAS  Google Scholar 

  46. H. Sasaki, Jpn. J. Appl. Phys. 19 19 19 19 , 94 (1980).

    Google Scholar 

  47. P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann, Appl. Phys. Lett. 41 41 41 41 , 635 (1982).

    Article  CAS  Google Scholar 

  48. H. Temkin, G. J. Dolan, M. B. Panish, S. N. G. Chu, Appl. Phys. Lett. 50 50 50 50 , 413 (1988); B. I. Miller, A. Shahar, U. Koren, P. J. Corvini, Appl. Phys. Lett. 54 54 54 54 , 188 (1989).

    Article  Google Scholar 

  49. L. L. Chang, H. Sakaki, C. A. Chang, L. Esaki, Phys. Rev. Letts. 38 38 38 38 , 1489 (1977); K. Lee, M. S. Shur, J. J. Drummond, H. Morkoc, IEEE Trans. Electron. Dev. 30 30 30 30 , 207 (1983).

    Article  CAS  Google Scholar 

  50. N. T. Linch, Festkorperprobleme 23 23 23 23 , 227 (1985).

    Google Scholar 

  51. D. R. Scifres, C. Lindstrom, R. D. Burnham, W. Streifer, T. L. Paoli, Electron. Letts. 19 19 19 19 , 169 (1983).

    Article  CAS  Google Scholar 

  52. P. M. Solomon, Proc. IEEE, 70, 489 (1982); T. E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49 49 49 49 , 519 (1986).

    Article  CAS  Google Scholar 

  53. H. Heiblum, D. C. Thomas, C. M. Knoedler, M. I. Nathan, Appl. Phys. Letts. 47 47 47 47 , 1105 (1985).

    Article  Google Scholar 

  54. O. Aina, M. Mattingly, F. Y. Juan, P. K. Bhattacharya, Appl. Phys. Letts. 50 50 50 50 , 43 (1987).

    Article  CAS  Google Scholar 

  55. I. Suemune, L. A. Coldren, IEEE J. Quant. Electron. 24 24 24 24 , 1778 (1988).

    Article  CAS  Google Scholar 

  56. D. Miller, D. Chemla, T. Damen, T. Wood, C. Burrus, A. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21 21 21 21 , 1462 (1985).

    Article  Google Scholar 

  57. F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54 54 54 54 , 350 (1980).

    Article  Google Scholar 

  58. C. S. Lent, D. J. Kirkner, J. Appl. Phys. 67 67 67 67 , 6353 (1990).

    Article  Google Scholar 

  59. C. S. Kim, A. M. Satanin, Y. S. Joe, R. M. Cosby, Phys. Rev. B, 60 60 60 60 , 10962 (1999).

    Article  CAS  Google Scholar 

  60. S. Midgley, J. B. Wang, Phys. Rev. B 64 64 64 64 , 153304 (2001).

    Article  Google Scholar 

  61. T. Sugaya, J. P. Bird, M. Ogura, Y. Sugiyama, D. K. Ferry, K. Y. Jang, Appl. Phys. Lett. 80 80 80 80 , 434 (2002).

    Article  CAS  Google Scholar 

  62. B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N. Pfeiffer, K. N. West, Appl. Phys. Lett. 72 72 72 72 , 3506 (1998).

    Article  CAS  Google Scholar 

  63. C. Dekker, Physics Today, 52 52 52 52 , 22 (1999).

    Article  CAS  Google Scholar 

  64. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, K. W. West, Phys. Rev. Lett. 77 77 77 77 , 4612 (1996).

    Article  CAS  Google Scholar 

  65. Y. Hayamizu, M. Yoshita, S. Watanabe, H. Akiyama, L. N. Pfeiffer, K. W. West, Appl. Phys. Lett. 81 81 81 81 , 4937 (2002).

    Article  CAS  Google Scholar 

  66. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280 280 280 280 , 1744 (1998).

    Article  CAS  Google Scholar 

  67. I. Kamiya, I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka, H. Sakaki, Physica E 13 13 13 13 , 131 (2002).

    Google Scholar 

  68. A. K. Geim, P. C. Main, N. La Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, M. A. Pate, Phys. Rev. Lett. 72 72 72 72 , 2061 (1994).

    Article  CAS  Google Scholar 

  69. A. S. Melnikov, V. M. Vinokur, Nature 415 415 415 415 , 60 (2002).

    Article  CAS  Google Scholar 

  70. K. Schwab, E. A. Henriksen, J. M. Worlock, M. L. Roukes, Nature 404 404 404 404 , 974 (2000).

    Article  CAS  Google Scholar 

  71. L. Kouwenhoven, Nature 403 403 403 403 , 374 (2000).

    Article  CAS  Google Scholar 

  72. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, H. Hirai, Nature 403 403 403 403 , 405 (2000).

    Article  CAS  Google Scholar 

  73. E. Paspalakis, Z. Kis, E. Voutsinas, A. F. Terzis, Phys. Rev. B 69 69 69 69 , 155316 (2004).

    Article  Google Scholar 

  74. J. H. Jefferson, M. Fearn, D. L. J. Tipton, T. P. Spiller, Phys. Rev. A 66 66 66 66 , 042328 (2002).

    Article  Google Scholar 

  75. J. Appenzeller, Ch. Schroer, Th. Schapers, A. v. d. Hart, A. Fröster, B. Lengeler, H. Lüth, Phys. Rev. B 53 53 53 53 , 9959 (1996).

    Article  CAS  Google Scholar 

  76. J. Appenzeller, C. Schroer, J. Appl. Phys. 87 87 87 87 , 3165 (2000).

    Article  CAS  Google Scholar 

  77. P. Debray, O. E. Raichev, M. Rahman, R. Akis, W. C. Mitchel, Appl. Phys. Lett. 74 74 74 74 , 768 (1999).

    Article  CAS  Google Scholar 

  78. P. M. Solomon, Proc. IEEE 70, 489 (1982); T. E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49 49 49 49 , 519 (1986).

    Article  CAS  Google Scholar 

  79. D. Kasemset, C. S. Hong, N. B. Patel, P. D. Dapkus, Appl. Phys. Letts. 41 41 41 41 , 912 (1982).

    Article  CAS  Google Scholar 

  80. K. Woodbridge, P. Blood, E. D. Pletcher, P. J. Hulyer, Appl. Phys. Lett. 45 45 45 45 , 16 (1984).

    Article  CAS  Google Scholar 

  81. D. Bimberg, M. Grundmann, N. N. Ledentsov, Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures Quantum Dot Heterostructures (John Wiley and Sons, USA, 1999)

    Google Scholar 

  82. T. Tsuboi, Phys. Stat. Sol. (b), 146 146 146 146 , K11 (1988) (and the references cited therein).

    Article  CAS  Google Scholar 

  83. K. P. Ghatak, S. Bhattacharya, S. Pahari, D. De, S. Ghosh, M. Mitra, Annalen der Physik, 17 17 17 17 , 195 (2008).

    Article  CAS  Google Scholar 

  84. J. S. Blakemore, Semiconductor Statistics Semiconductor Statistics Semiconductor Statistics Semiconductor Statistics (Dover Publications, USA, 1987).

    Google Scholar 

  85. W. Zawadzki, In: Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices Two Dimensional Systems, Hetrostructures and Superlattices , Edited by G. Bauer, F. Kuchar, H. Heinrich (Springer-Verlag, Germany, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghatak, K.P., De, D., Bhattacharya, S. (2009). Fundamentals of Photoemission from Wide Gap Materials. In: Photoemission from Optoelectronic Materials and their Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78606-3_1

Download citation

Publish with us

Policies and ethics