Advertisement

Immunogenomics and Proteomics in Hematopoietic Stem Cell Transplantation: Predicting Post-Hematopoietic Stem Cell Transplant Complications

  • Eva M. Weissinger
  • Anne M. Dickinson
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 144)

Introduction

Since its early success in the 1950s, hematopoietic stem cell transplantation (HSCT) has continued to be carried out exponentially worldwide rising to over 7,000 transplants alone across Europe in 2007. HSCT is the major curative therapy for leukemia, lymphoma and other hematological diseases such as aplastic anemia and congenital immunodeficiency diseases such as severe combined immunodeficiency [1, 2]. In recent years it has also been used to downregulate autoimmune diseases with success in juvenile rheumatoid arthritis and systemic lupus erythematosus [3, 4]. Allogeneic HSCT, however, still has a 40–50% risk of morbidity and mortality, largely due to complications that arise post-transplant, such as infection and graft-versus-host disease (GvHD). Matching between recipient and donor at human leukocyte antigen (HLA) loci is imperative to reduce GvHD, and among patients receiving transplants from matched unrelated donors (MUD), mismatches at either HLA Class I or Class...

Keywords

Human Leukocyte Antigen Hematopoietic Stem Cell Transplantation Acute GvHD Human Leukocyte Antigen Class Chronic GvHD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements and Funding

The authors thank the peer reviewers for helpful suggestions and discussion. Funding for current research on non-HLA gene polymorphisms and support to J.H., H.C. (Australia) is via European Commission grants TRANSNET (MCRTN-CT-2004-512253) TRANSMODULATE (MCOIF-CT-2004-509939) and STEMDIAGNOSTICS (LSHB-CT-2007-037703), the Leukaemia Research Fund, and the Tyneside Leukaemia Research Association. Funding for current research on proteomics applied to clinical diagnostics is provided by the “Deutsche Jose Carreras Leukämie Stiftung” (DJCLS R05/08) to EMW and the German research foundation (DFG Mi 681/4-1).

References

  1. 1.
    Antoine C, Muller S, Cant A, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003;361:553–60.PubMedGoogle Scholar
  2. 2.
    Schrezenmeier H, Bacigalupo A. Aplastic anemia—pathophysiology and treatment. Cambridge: Cambridge University Press; 2000.Google Scholar
  3. 3.
    Gratwohl A, Passweg J, Gerber I, Tyndall A. Stem cell transplantation for autoimmune diseases. Best Pract Res Clin Haematol. 2001;14:755–76.PubMedGoogle Scholar
  4. 4.
    Tyndall A, Gratwohl A. Haemopoietic stem and progenitor cells in the treatment of severe autoimmune diseases. Ann Rheum Dis. 1996;55:149–51.PubMedGoogle Scholar
  5. 5.
    Petersdorf EW, Anasetti C, Martin PJ, Hansen JA. Tissue typing in support of unrelated hematopoietic cell transplantation. Tissue Antigens 2003;61:1–11.PubMedGoogle Scholar
  6. 6.
    DeGast GC, Mickelson EM, Beatty PG, et al. Mixed leukocyte culture reactivity and graft-versus-host disease in HLA-identical marrow transplantation for leukemia. Bone Marrow Transplant. 1992;9:87–90.PubMedGoogle Scholar
  7. 7.
    Mickelson EM, Anasetti C, Yoon Choo S, et al. Role of the mixed lymphocyte culture reaction in predicting acute graft-versus-host disease after marrow transplants from haploidentical and unrelated donors. Transplant Proc. 1993;25:1239–40.PubMedGoogle Scholar
  8. 8.
    Kaminski E. Cell-based histocompatibility testing. In: Bidwell G, Navarette C, editors. Histocompatibility testing. London: Imperial College Press; 1999:307–45.Google Scholar
  9. 9.
    Kaminski E, Hows J, Man S, et al. Prediction of graft versus host disease by frequency analysis of cytotoxic T cells after unrelated donor bone marrow transplantation. Transplantation 1989;48:608–13.PubMedGoogle Scholar
  10. 10.
    Theobald M, Nierle T, Bunjes D, Arnold R, Heimpel H. Host-specific interleukin-2-secreting donor T-cell precursors as predictors of acute graft-versus-host disease in bone marrow transplantation between HLA-identical siblings. N Engl J Med. 1992;327:1613–7.PubMedGoogle Scholar
  11. 11.
    Schwarer AP, Jiang YZ, Brookes PA, et al. Frequency of anti-recipient alloreactive helper T-cell precursors in donor blood and graft-versus-host disease after HLA-identical sibling bone-marrow transplantation. Lancet 1993;341:203–5.PubMedGoogle Scholar
  12. 12.
    Roosnek E, Hogendijk S, Zawadynski S, et al. The frequency of pretransplant donor cytotoxic T cell precursors with anti-host specificity predicts survival of patients transplanted with bone marrow from donors other than HLA-identical siblings. Transplantation 1993;56:691–6.PubMedGoogle Scholar
  13. 13.
    Dickinson AM, Sviland L, Wang XN, et al. Predicting graft-versus-host disease in HLA-identical bone marrow transplant: a comparison of T-cell frequency analysis and a human skin explant model. Transplantation 1998;66:857–63.PubMedGoogle Scholar
  14. 14.
    Fussell ST, Donnellan M, Cooley MA, Farrell C. Cytotoxic T lymphocyte precursor frequency does not correlate with either the incidence or severity of graft-versus-host disease after matched unrelated donor bone marrow transplantation. Transplantation 1994;57:673–6.PubMedGoogle Scholar
  15. 15.
    Freidel A-C, Michallet M, Gebuhrer L, et al. Study of HTLp in adult patients receiving bone marrow transplantation from HLA geno-identical sibs. Hum Immunol. 1996;47:84 (Abstract).Google Scholar
  16. 16.
    Claas FH, Roelen DL, Mulder A, Doxiadis, II, Oudshoorn M, Heemskerk M. Differential immunogenicity of HLA class I alloantigens for the humoral versus the cellular immune response: “towards tailor-made HLA mismatching.” Hum Immunol. 2006;67:424–9.PubMedGoogle Scholar
  17. 17.
    Heemskerk MB, Roelen DL, Dankers MK, et al. Allogeneic MHC class I molecules with numerous sequence differences do not elicit a CTL response. Hum Immunol. 2005;66:969–76.PubMedGoogle Scholar
  18. 18.
    Dankers MK, Heemskerk MB, Duquesnoy RJ, et al. HLAMatchmaker algorithm is not a suitable tool to predict the alloreactive cytotoxic T-lymphocyte response in vitro. Transplantation 2004;78:165–7.PubMedGoogle Scholar
  19. 19.
    Little AM, Marsh SG, Madrigal JA. Current methodologies of human leukocyte antigen typing utilized for bone marrow donor selection. Curr Opin Hematol. 1998;5:419–28.PubMedGoogle Scholar
  20. 20.
    Bishara A, Brautbar C, Nagler A, et al. Prediction by a modified mixed leukocyte reaction assay of graft-versus-host disease and graft rejection after allogeneic bone marrow transplantation. Transplantation 1994;57:1474–9.PubMedGoogle Scholar
  21. 21.
    Tanaka J, Imamura M, Kasai M, et al. Cytokine gene expression in the mixed lymphocyte culture in allogenic bone marrow transplants as a predictive method for transplantation-related complications. Br J Haematol. 1994;87:415–8.PubMedGoogle Scholar
  22. 22.
    Miyamoto T, Akashi K, Hayashi S, et al. Serum concentration of the soluble interleukin-2 receptor for monitoring acute graft-versus-host disease. Bone Marrow Transplant. 1996;17:185–90.PubMedGoogle Scholar
  23. 23.
    Puppo F, Brenci S, Ghio M, et al. Serum HLA class I antigen levels in allogeneic bone marrow transplantation: a possible marker of acute GVHD. Bone Marrow Transplant. 1996;17:753–8.PubMedGoogle Scholar
  24. 24.
    Westhoff U, Doxiadis I, Beelen DW, Schaefer UW, Grosse-Wilde H. Soluble HLA class I concentrations and GVHD after allogeneic marrow transplantation. Transplantation 1989;48:891–3.PubMedGoogle Scholar
  25. 25.
    Liem LM, van Houwelingen HC, Goulmy E. Serum cytokine levels after HLA-identical bone marrow transplantation. Transplantation 1998;66:863–71.PubMedGoogle Scholar
  26. 26.
    Vogelsang GB, Hess AD, Berkman AW, et al. An in vitro predictive test for graft versus host disease in patients with genotypic HLA-identical bone marrow transplants. N Engl J Med. 1985;313:645–50.PubMedGoogle Scholar
  27. 27.
    Dickinson AM, Hromadníková I, Sviland L, et al. Use of a skin explant model for predicting GvHD in HLA-matched bone marrow transplants—effect of GvHD prophylaxis. Bone Marrow Transplant. 1999;24:857–63.PubMedGoogle Scholar
  28. 28.
    Dickinson AM, Sviland L, Jackson G, et al. Cytokine involvement in predicting clinical graft versus host disease (GvHD) in allogeneic bone marrow transplant recipients. Bone Marrow Transplant. 1994;13:65–70.PubMedGoogle Scholar
  29. 29.
    Sviland L, Dickinson AM, Carey PJ, Pearson ADJ, Proctor SJ. An in vitro predictive test for clinical graft versus host disease, correlation with clinical GvHD stage in allogeneic bone marrow transplant recipients. Bone Marrow Transplant. 1990;5:105–9.PubMedGoogle Scholar
  30. 30.
    Wang XN, Collin M, Sviland L, et al. Skin explant model of human graft-versus-host disease: Prediction of clinical outcome and correlation with biological risk factors. Biol Blood Marrow Transplant. 2006;12:152–9.PubMedGoogle Scholar
  31. 31.
    Dickinson AM, Sviland L, Dunn J, Carey P, Proctor SJ. Demonstration of direct involvement of cytokines in graft-versus-host reactions using an in vitro human skin explant model. Bone Marrow Transplant. 1991;7:209–16.PubMedGoogle Scholar
  32. 32.
    Jarvis M, Marzolini M, Wang XN, Jackson G, Sviland L, Dickinson AM. Heat shock protein 70: correlation of expression with degree of graft-versus-host response and clinical graft-versus-host disease. Transplantation 2003;76:849–53.PubMedGoogle Scholar
  33. 33.
    Jarvis M, Schulz U, Dickinson AM, et al. The detection of apoptosis in a human in vitro skin explant assay for graft versus host reactions. J Clin Pathol. 2002;55:127–32.PubMedGoogle Scholar
  34. 34.
    Dickinson AM, Wang XN, Sviland L, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med. 2002;8:410–4.PubMedGoogle Scholar
  35. 35.
    Holler E, Roncarolo MG, Hintermeier-Knabe R, et al. Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation. Bone Marrow Transplant. 2000;25:237–41.PubMedGoogle Scholar
  36. 36.
    Middleton PG, Taylor PRA, Jackson G, Proctor SJ, Dickinson AM. Cytokine Gene polymorphisms associating with severe acute graft-versus-host disease in HLA-identical sibling transplants. Blood 1998;92:3943–8.PubMedGoogle Scholar
  37. 37.
    Cavet J, Middleton PG, Segall M, Noreen H, Davies SM, Dickinson AM. Recipient tumor necrosis factor-alpha and interleukin-10 gene polymorphisms associate with early mortality and acute graft-versus-host disease severity in HLA-matched sibling bone marrow transplants. Blood 1999;94:3941–6.PubMedGoogle Scholar
  38. 38.
    Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7:340–52.PubMedGoogle Scholar
  39. 39.
    Turner D, Grant SC, Yonan N, et al. Cytokine gene polymorphism and heart transplant rejection. Transplantation 1997;64:776–9.PubMedGoogle Scholar
  40. 40.
    Turner DM, Grant SC, Lamb WR, et al. A genetic marker of high TNF-alpha production in heart transplant recipients. Transplantation 1995;60:1113–7.PubMedGoogle Scholar
  41. 41.
    Sankaran D, Asderakis A, Ashraf S, et al. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int. 1999;56:281–8.Google Scholar
  42. 42.
    Kim TG, Kim HY, Lee SH, et al. Systemic lupus erythematosus with nephritis is strongly associated with the TNFB*2 homozygote in the Korean population. Hum Immunol. 1996;46:10–7.PubMedGoogle Scholar
  43. 43.
    Sullivan KE, Wooten C, Schmekpeper BJ, Goldman D, Petri MA. A promoter polymorphism of tumor necrosis factor alpha associated with systemic lupus erythematosus in African–Americans. Arthritis Rheum. 1997;40:2207–11.PubMedGoogle Scholar
  44. 44.
    Fong KY, Howe HS, Tin SK, Boey ML, Feng PH. Polymorphism of the regulatory region of tumour necrosis factor alpha gene in patients with systemic lupus erythematosus. Ann Acad Med Singapore. 1996;25:22–30.Google Scholar
  45. 45.
    Eskdale J, Wordsworth P, Bowman S, Field M, Gallagher G. Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens. 1997;49:635–7.PubMedGoogle Scholar
  46. 46.
    Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:1369–76.PubMedGoogle Scholar
  47. 47.
    Awata T, Matsumoto C, Urakami T, Hagura R, Amemiya S, Kanazawa Y. Association of polymorphisms in the interferon gamma gene with IDDM. Diabetologia. 1994;37:1159–62.PubMedGoogle Scholar
  48. 48.
    Cullup H, Stark G. Interleukin-1 polymorphisms and Graft versus Host Disease. Leuk Lymphoma. 2005;46:517–23.PubMedGoogle Scholar
  49. 49.
    Mullighan CG, Bardy PG. Advances in the genomics of allogeneic haemopoietic stem cell transplantation. Drug Dev Res. 2004;62:273–92.Google Scholar
  50. 50.
    Shaw BE, Maldonado H, Madrigal JA, et al. Polymorphisms in the TNFA gene promoter region show evidence of strong linkage disequilibrium with HLA and are associated with delayed neutrophil engraftment in unrelated donor hematopoietic stem cell transplantation. Tissue Antigens. 2004;63:401–11.PubMedGoogle Scholar
  51. 51.
    Lichtman AH, Krenger W, Ferrara JLM. Cytokine Networks. In: Ferrara JLM, Deeg HJ, Burakoff SJ, eds. Graft-vs-Host Disease. New York: Marcel Dekker, Inc; 1996. p. 179–218.Google Scholar
  52. 52.
    Nordlander A, Uzunel M, Mattsson J, Remberger M. The TNFd4 allele is correlated to moderate-to-severe acute graft-versus-host disease after allogeneic stem cell transplantation. Br J Haematol. 2002;119:1133–336.PubMedGoogle Scholar
  53. 53.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA. 1997;94:3195–9.PubMedGoogle Scholar
  54. 54.
    Takahashi H, Furukawa T, Hashimoto S, et al. Contribution of TNF-alpha and IL-10 gene polymorphisms to graft-versus-host disease following allo-hematopoietic stem cell transplantation. Bone Marrow Transplant. 2000;26:1317–23.PubMedGoogle Scholar
  55. 55.
    Wang J, Pan K, Li D, Lu D. [The relationship between donor TNFalpha—308 (G/A) genotype and recipient acute GVHD in allo-BMT]. Zhonghua Xue Ye Xue Za Zhi. 2002;23:397–9.PubMedGoogle Scholar
  56. 56.
    Mullighan C, Heatley S, Doherty K, et al. Non-HLA immunogenetic polymorphisms and the risk of complications after allogeneic hemopoietic stem-cell transplantation. Transplantation 2004;77:587–96.PubMedGoogle Scholar
  57. 57.
    Rocha V, Franco RF, Porcher R, et al. Host defence and inflammatory gene polymorphisms are associated with outcomes after HLA-identical sibling bone marrow transplant. Blood 2002;100:3908–18.PubMedGoogle Scholar
  58. 58.
    Socié G, Loiseau P, Tamouza R, et al. Both genetic and clinical factors predict the development of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Transplantation 2001;72:699–706.PubMedGoogle Scholar
  59. 59.
    Lin MT, Storer B, Martin PJ, et al. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med. 2003;349:2201–10.PubMedGoogle Scholar
  60. 60.
    Bogunia-Kubik K, Polak M, Lange A. TNF polymorphisms are associated with toxic but not with aGVHD complications in the recipients of allogeneic sibling haematopoietic stem cell transplantation. Bone Marrow Transplant. 2003;32:617–22.PubMedGoogle Scholar
  61. 61.
    Nedospasov SA, Udalova IA, Kuprash DV, Turetskaya RL. DNA sequence polymorphism at the human tumor necrosis factor (TNF) locus. Numerous TNF/lymphotoxin alleles tagged by two closely linked microsatellites in the upstream region of the lymphotoxin (TNF-beta) gene. J Immunol. 1991;147:1053–9.PubMedGoogle Scholar
  62. 62.
    Udalova IA, Nedospasov SA, Webb GC, Chaplin DD, Turetskaya RL. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993;16:180–6.PubMedGoogle Scholar
  63. 63.
    Holzinger I, de Baey A, Messer G, Kick G, Zwierzina H, Weiss EH. Cloning and genomic characterization of LST1: a new gene in the human TNF region. Immunogenetics 1995;42:315–22.PubMedGoogle Scholar
  64. 64.
    Pociot F, Molvig J, Wogensen L, et al. A tumour necrosis factor beta gene polymorphism in relation to monokine secretion and insulin-dependent diabetes mellitus. Scand J Immunol. 1991;33:37–49.PubMedGoogle Scholar
  65. 65.
    Remberger M, Jaksch M, Uzunel M, Mattsson J. Serum levels of cytokines correlate to donor chimerism and acute graft-vs.-host disease after haematopoietic stem cell transplantation. Eur J Haematol. 2003;70:384–91.PubMedGoogle Scholar
  66. 66.
    Keen LJ, DeFor TE, Bidwell JL, Davies SM, Bradley BA, Hows JM. Interleukin-10 and tumor necrosis factor alpha region haplotypes predict transplant-related mortality after unrelated donor stem cell transplantation. Blood 2004;103:3599–602.PubMedGoogle Scholar
  67. 67.
    Bettens F, Passweg J, Gratwohl A, et al. Association of TNFd and IL-10 polymorphisms with mortality in unrelated hematopoietic stem cell transplantation. Transplantation 2006;81:1261–7.PubMedGoogle Scholar
  68. 68.
    Ishikawa Y, Kashiwase K, Akaza K, et al. Polymorphisms in TNFA and TNFR2 affect outcome of unrelated bone marrow transplantation. Bone Marrow Transplant. 2002;29:569–75.PubMedGoogle Scholar
  69. 69.
    Barbara JA, Smith WB, Gamble JR, et al. Dissociation of TNF-alpha cytotoxic and proinflammatory activities by p55 receptor- and p75 receptor-selective TNF-alpha mutants. EMBO J. 1994;13:843–50.PubMedGoogle Scholar
  70. 70.
    Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995;377:348–51.PubMedGoogle Scholar
  71. 71.
    MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 2002;14:477–92.PubMedGoogle Scholar
  72. 72.
    Morita C, Horiuchi T, Tsukamoto H, et al. Association of tumor necrosis factor receptor type II polymorphism 196R with Systemic lupus erythematosus in the Japanese: molecular and functional analysis. Arthritis Rheum. 2001;44:2819–27.PubMedGoogle Scholar
  73. 73.
    Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 1999;30:526–30.PubMedGoogle Scholar
  74. 74.
    Stark GL, Dickinson AM, Jackson GH, Taylor PR, Proctor SJ, Middleton PG. Tumour necrosis factor receptor type II 196 M/R genotype correlates with circulating soluble receptor levels in normal subjects and with graft-versus-host disease after sibling allogeneic bone marrow transplantation. Transplantation 2003;76:1742–9.PubMedGoogle Scholar
  75. 75.
    Keijsers V, Verweij C, Westendorp RGJ, Breedveld FC, Huizinga TWJ. IL10 polymorphisms in relation to production and rheumatoid arthritis. Arthritis Rheum. 1997;40:S179 (Abstract).Google Scholar
  76. 76.
    Gibson AW, Edberg JC, Wu J, Westendorp RG, Huizinga TW, Kimberly RP. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol. 2001;166:3915–22.PubMedGoogle Scholar
  77. 77.
    Kim DH, Lee NY, Sohn SK, et al. IL-10 promoter gene polymorphism associated with the occurrence of chronic GVHD and its clinical course during systemic immunosuppressive treatment for chronic GVHD after allogeneic peripheral blood stem cell transplantation. Transplantation 2005;79:1615–22.PubMedGoogle Scholar
  78. 78.
    Seo KW, Kim DH, Sohn SK, et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant. 2005;36:1089–95.PubMedGoogle Scholar
  79. 79.
    Yang YG, Wang H, Asavaroengchai W, Dey BR. Role of Interferon-gamma in GvHD and GvL. Cell Mol Immunol. 2005;2:323–9.PubMedGoogle Scholar
  80. 80.
    Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet. 1999;26:1–3.PubMedGoogle Scholar
  81. 81.
    Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol. 2000;61:863–6.PubMedGoogle Scholar
  82. 82.
    Sica A, Tan TH, Rice N, Kretzschmar M, Ghosh P, Young HA. The c-rel protooncogene product c-Rel but not NF-kappa B binds to the intronic region of the human interferon-gamma gene at a site related to an interferon-stimulable response element. Proc Natl Acad Sci USA. 1992;89:1740–4.PubMedGoogle Scholar
  83. 83.
    Cavet J, Dickinson AM, Norden J, Taylor PR, Jackson GH, Middleton PG. Interferon-gamma and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood 2001;98:1594–600.PubMedGoogle Scholar
  84. 84.
    Bogunia-Kubik K, Mlynarczewska A, Wysoczanska B, Lange A. Recipient interferon-gamma 3/3 genotype contributes to the development of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica 2005;90:425–6.PubMedGoogle Scholar
  85. 85.
    Mlynarczewska A, Wysoczanska B, Karabon L, Bogunia-Kubik K, Lange A. Lack of IFN-gamma 2/2 homozygous genotype independently of recipient age and intensity of conditioning regimen influences the risk of aGVHD manifestation after HLA-matched sibling haematopoietic stem cell transplantation. Bone Marrow Transplant. 2004;34:339–44.PubMedGoogle Scholar
  86. 86.
    Brok HP, Heidt PJ, van der Meide PH, Zurcher C, Vossen JM. Interferon-gamma prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Immunol. 1993;151:6451–9.PubMedGoogle Scholar
  87. 87.
    Bogunia-Kubik K, Mlynarczewska A, Jaskula E, Lange A. The presence of IFNG 3/3 genotype in the recipient associates with increased risk for Epstein-Barr virus reactivation after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2006;132:326–32.PubMedGoogle Scholar
  88. 88.
    Cullup H, Dickinson AM, Jackson GH, Taylor PRA, Cavet J, Middleton PG. Donor interleukin-1 receptor antagonist genotype associated with acute graft-versus-host disease in human leukocyte antigen-matched sibling allogeneic transplants. Br J Haematol. 2001;113:807–13.PubMedGoogle Scholar
  89. 89.
    Cullup H, Dickinson AM, Cavet J, Jackson GH, Middleton PG. Polymorphisms of IL-1alpha constitute independent risk factors for chronic graft versus host disease following allogeneic bone marrow transplantation. Br J Haematol. 2003;122:778–87.PubMedGoogle Scholar
  90. 90.
    Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000;275:18138–44.PubMedGoogle Scholar
  91. 91.
    Ferrari SL, Ahn-Luong L, Garnero P, Humphries SE, Greenspan SL. Two promoter polymorphisms regulating interleukin-6 gene expression are associated with circulating levels of C-reactive protein and markers of bone resorption in postmenopausal women. J Clin Endocrinol Metab. 2003;88:255–9.PubMedGoogle Scholar
  92. 92.
    Karabon L, Wysoczanska B, Bogunia-Kubik K, Suchnicki K, Lange A. IL-6 and IL-10 promoter gene polymorphisms of patients and donors of allogeneic sibling hematopoietic stem cell transplants associate with the risk of acute graft-versus-host disease. Hum Immunol. 2005;66:700–10.PubMedGoogle Scholar
  93. 93.
    Banovic T, MacDonald KP, Morris ES, et al. TGF-beta in allogeneic stem cell transplantation: friend or foe? Blood 2005;106:2206–14.PubMedGoogle Scholar
  94. 94.
    Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type beta 1. Hum Mol Genet. 1999;8:93–7.PubMedGoogle Scholar
  95. 95.
    Leffell MS, Vogelsang GB, Lucas DP, Delaney NL, Zachary AA. Association between TGF-beta expression and severe GVHD in allogeneic bone marrow transplantation. Transplant Proc. 2001;33:485–6.PubMedGoogle Scholar
  96. 96.
    Hattori H, Matsuzaki A, Suminoe A, et al. Polymorphisms of transforming growth factor-beta1 and transforming growth factor-beta1 type II receptor genes are associated with acute graft-versus-host disease in children with HLA-matched sibling bone marrow transplantation. Bone Marrow Transplant. 2002;30:665–71.PubMedGoogle Scholar
  97. 97.
    MacMillan ML, Radloff GA, Kiffmeyer WR, DeFor TE, Weisdorf DJ, Davies SM. High-producer interleukin-2 genotype increases risk for acute graft-versus-host disease after unrelated donor bone marrow transplantation. Transplantation 2003;76:1758–62.PubMedGoogle Scholar
  98. 98.
    Shamim Z, Ryder LP, Heilmann C, et al. Genetic polymorphisms in the genes encoding human interleukin-7 receptor-alpha: prognostic significance in allogeneic stem cell transplantation. Bone Marrow Transplant. 2006;37:485–91.PubMedGoogle Scholar
  99. 99.
    Cardoso SM, DeFor TE, Tilley LA, Bidwell JL, Weisdorf DJ, MacMillan ML. Patient interleukin-18 GCG haplotype associates with improved survival and decreased transplant-related mortality after unrelated-donor bone marrow transplantation. Br J Haematol. 2004;126:704–10.PubMedGoogle Scholar
  100. 100.
    Bogunia-Kubik K, Duda D, Suchnicki K, Lange A. CCR5 deletion mutation and its association with the risk of developing acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica 2006;91:1628–34.PubMedGoogle Scholar
  101. 101.
    Loeffler J, Steffens M, Arlt EM, et al. Polymorphisms in the genes encoding chemokine receptor 5, interleukin-10, and monocyte chemoattractant protein 1 contribute to cytomegalovirus reactivation and disease after allogeneic stem cell transplantation. J Clin Micriobiol. 2006;44:1847–50.Google Scholar
  102. 102.
    Xu D, Liu H, Komai-Koma M. Direct and indirect role of Toll-like receptors in T cell mediated immunity. Cell Mol Immunol. 2004;1:239–46.PubMedGoogle Scholar
  103. 103.
    Kaisho T, Akira S. Pleiotropic function of Toll-like receptors. Microbes Infect. 2004;6:1388–94.PubMedGoogle Scholar
  104. 104.
    Kaisho T, Akira S. Regulation of dendritic cell function through toll-like receptors. Curr Mol Med. 2003;3:759–71.PubMedGoogle Scholar
  105. 105.
    Lorenz E, Schwartz DA, Martin PJ, et al. Association of TLR4 mutations and the risk for acute GVHD after HLA-matched-sibling hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7:384–7.PubMedGoogle Scholar
  106. 106.
    Kesh S, Mensah NY, Peterlongo P, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann NY Acad Sci. 2005;1062:95–103.PubMedGoogle Scholar
  107. 107.
    Holler E, Rogler G, Herfarth H, et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 2004;104:889–94.PubMedGoogle Scholar
  108. 108.
    Holler E, Rogler G, Brenmoehl J, et al. Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: Effect on long term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood 2006;107:4189–93.PubMedGoogle Scholar
  109. 109.
    Granell M, Urbano-Ispizua A, Arostegui JI, et al. Effect of NOD2/CARD15 variants in T-cell depleted allogeneic stem cell transplantation. Haematologica 2007;91:1372–6.Google Scholar
  110. 110.
    Mullighan CG, Heatley S, Doherty K, et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood 2002;99:3524–9.PubMedGoogle Scholar
  111. 111.
    van der Straaten HM, Fijnheer R, Nieuwenhuis HK, van de Winkel JG, Verdonck LF. The FcgammaRIIa-polymorphic site as a potential target for acute graft-versus-host disease in allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:206–12.PubMedGoogle Scholar
  112. 112.
    Middleton PG, Cullup H, Cavet J, Jackson GH, Taylor PRA, Dickinson AM. Oestrogen receptor alpha gene polymorphism associates with occurrence of graft-versus-host disease and reduced survival in HLA-matched sib-allo BMT. Bone Marrow Transplant. 2003;32:41–7.PubMedGoogle Scholar
  113. 113.
    Middleton PG, Cullup H, Dickinson AM, et al. Vitamin D receptor gene polymorphism associates with graft-versus-host disease and survival in HLA-matched sibling allogeneic bone marrow transplantation. Bone Marrow Transplant. 2002;30:223–8.PubMedGoogle Scholar
  114. 114.
    Bogunia-Kubik K, Lange A. HSP70-hom gene polymorphism in allogeneic hematopoietic stem-cell transplant recipients correlates with the development of acute graft-versus-host disease. Transplantation 2005;79:815–20.PubMedGoogle Scholar
  115. 115.
    Bogunia-Kubik K, Uklejewska A, Dickinson AM, Jarvis M, Lange A. HSP70-hom gene polymorphism as a prognostic marker of graft-versus-host disease. Transplantation 2006;82:1116–7 (Letter).Google Scholar
  116. 116.
    Robien K, Ulrich CM, Bigler J, et al. Methylenetetrahydrofolate reductase genotype affects risk of relapse after hematopoietic cell transplantation for chronic myelogenous leukemia. Clin Cancer Res. 2004;10:7592–8.PubMedGoogle Scholar
  117. 117.
    Ulrich CM, Yasui Y, Storb R, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001;98:231–4.PubMedGoogle Scholar
  118. 118.
    Rocha V, Porcher R, Filion A, et al. Association of Pharmacogenes polymorphisms with toxicities and GvHD after HLA-identical sibling bone marrow transplantation. Blood 2003;102:241a (Abstract 848).Google Scholar
  119. 119.
    Kalayoglu-Besisik S, Caliskan Y, Sargin D, Gurses N, Ozbek U. Methylenetetrahydrofolate reductase C677T polymorphism and toxicity in allogeneic hematopoietic cell transplantation. Transplantation 2003;76:1775–7.PubMedGoogle Scholar
  120. 120.
    Murphy N, Diviney M, Szer J, et al. Donor methylenetetrahydrofolate reductase genotype is associated with graft-versus-host disease in hematopoietic stem cell transplant patients treated with methotrexate. Bone Marrow Transplant. 2006;37:773–9.PubMedGoogle Scholar
  121. 121.
    Kim I, Lee K-H, Kim JH, et al. Polymorphisms of the methylenetetrahydrofolate reductase gene and clinical outcomes in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2007;86:41–8.Google Scholar
  122. 122.
    Gratwohl A, Brand R, Apperley J, et al. Graft-versus-host disease and outcome in HLA-identical sibling transplantations for chronic myeloid leukemia. Blood 2002;100:3877–86.PubMedGoogle Scholar
  123. 123.
    Gratwohl A, Hermans J, Goldman JM, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998;352:1087–92.PubMedGoogle Scholar
  124. 124.
    Weisdorf D, Hakke R, Blazar B, et al. Risk factors for acute graft-versus-host disease in histocompatible donor bone marrow transplantation. Transplantation 1991;51:1197–203.PubMedGoogle Scholar
  125. 125.
    Niederwieser D, Pepe M, Storb R, Witherspoon R, Longton G, Sullivan K. Factors predicting chronic graft-versus-host disease and survival after marrow transplantation for aplastic anemia. Bone Marrow Transplant. 1989;4:151–6.PubMedGoogle Scholar
  126. 126.
    Leisenring WM, Martin PJ, Petersdorf EW, et al. An acute graft-versus-host disease activity index to predict survival after hematopoietic cell transplantation with myeloablative conditioning regimens. Blood 2006;108:749–55.PubMedGoogle Scholar
  127. 127.
    Seitz W, Zimmer E, Alberti PE. [Paper-electrophoretic studies on proteins in urine of normal and sick individuals.]. Z Klin Med. 1953;152:196–201.PubMedGoogle Scholar
  128. 128.
    O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.PubMedGoogle Scholar
  129. 129.
    Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl. 2007;1:148–56.PubMedGoogle Scholar
  130. 130.
    Kapetanovic IM, Rosenfeld S, Izmirlian G. Overview of commonly used bioinformatics methods and their applications. Ann NY Acad Sci. 2004;1020:10–21.PubMedGoogle Scholar
  131. 131.
    Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA. 1993;90:5011–5.PubMedGoogle Scholar
  132. 132.
    Henzel WJ, Watanabe C, Stults JT. Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom. 2003;14:931–42.PubMedGoogle Scholar
  133. 133.
    Wu TL. Two-dimensional difference gel electrophoresis. Methods Mol Biol. 2006;328:71–95.PubMedGoogle Scholar
  134. 134.
    Issaq HJ. The role of separation science in proteomics research. Electrophoresis 2001;22:3629–38.PubMedGoogle Scholar
  135. 135.
    Issaq HJ, Conrads TP, Janini GM, Veenstra TD. Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 2002;23:3048–61.PubMedGoogle Scholar
  136. 136.
    Chen EI, Hewel J, Felding-Habermann B, Yates JR, 3rd. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics. 2006;5:53–6.PubMedGoogle Scholar
  137. 137.
    Cagney G, Park S, Chung C, et al. Human tissue profiling with multidimensional protein identification technology. J Proteome Res. 2005;4:1757–67.PubMedGoogle Scholar
  138. 138.
    Kislinger T, Gramolini AO, MacLennan DH, Emili A. Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom. 2005;16:1207–20.PubMedGoogle Scholar
  139. 139.
    Soldi M, Sarto C, Valsecchi C, et al. Proteome profile of human urine with two-dimensional liquid phase fractionation. Proteomics 2005;5:2641–7.PubMedGoogle Scholar
  140. 140.
    Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005;24:959–77.PubMedGoogle Scholar
  141. 141.
    Yip TT, Lomas L. SELDI ProteinChip array in oncoproteomic research. Technol Cancer Res Treat. 2002;1:273–80.PubMedGoogle Scholar
  142. 142.
    von Eggeling F, Junker K, Fiedle W, et al. Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 2001;22:2898–902.Google Scholar
  143. 143.
    Weinberger SR, Viner RI, Ho P. Tagless extraction-retentate chromatography: a new global protein digestion strategy for monitoring differential protein expression. Electrophoresis 2002;23:3182–92.PubMedGoogle Scholar
  144. 144.
    Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.PubMedGoogle Scholar
  145. 145.
    Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–7.PubMedGoogle Scholar
  146. 146.
    Rosenblatt KP, Bryant-Greenwood P, Killian JK, et al. Serum proteomics in cancer diagnosis and management. Annu Rev Med. 2004;55:97–112.PubMedGoogle Scholar
  147. 147.
    Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int. 2004;65:323–32.PubMedGoogle Scholar
  148. 148.
    Kolch W, Mischak H, Chalmers MJ, Pitt A, Marshall AG. Clinical proteomics: a question of technology. Rapid Commun Mass Spectrom. 2004;18:2365–6.PubMedGoogle Scholar
  149. 149.
    Check E. Proteomics and cancer: running before we can walk? Nature 2004;429:496–7.PubMedGoogle Scholar
  150. 150.
    Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004;20:777–85.PubMedGoogle Scholar
  151. 151.
    Orvisky E, Drake SK, Martin BM, et al. Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics 2006;6:2895–902.PubMedGoogle Scholar
  152. 152.
    Neuhoff N, Kaiser T, Wittke S, et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:149–56.PubMedGoogle Scholar
  153. 153.
    Johannesson N, Wetterhall M, Markides KE, Bergquist J. Monomer surface modifications for rapid peptide analysis by capillary electrophoresis and capillary electrochromatography coupled to electrospray ionization-mass spectrometry. Electrophoresis 2004;25:809–16.PubMedGoogle Scholar
  154. 154.
    Hernandez-Borges J, Neususs C, Cifuentes A, Pelzing M. On-line capillary electrophoresis-mass spectrometry for the analysis of biomolecules. Electrophoresis 2004;25:2257–81.PubMedGoogle Scholar
  155. 155.
    Neususs C, Pelzing M, Macht M. A robust approach for the analysis of peptides in the low femtomole range by capillary electrophoresis-tandem mass spectrometry. Electrophoresis 2002;23:3149–59.PubMedGoogle Scholar
  156. 156.
    Schmitt-Kopplin P, Englmann M. Capillary electrophoresis—mass spectrometry: survey on developments and applications 2003–2004. Electrophoresis 2005;26:1209–20.PubMedGoogle Scholar
  157. 157.
    Sassi AP, Andel F, 3rd, Bitter HM, et al. An automated, sheathless capillary electrophoresis-mass spectrometry platform for discovery of biomarkers in human serum. Electrophoresis 2005;26:1500–12.PubMedGoogle Scholar
  158. 158.
    Klampfl CW. Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis 2006;27:3–34.PubMedGoogle Scholar
  159. 159.
    Ullsten S, Danielsson R, Backstrom D, Sjoberg P, Bergquist J. Urine profiling using capillary electrophoresis-mass spectrometry and multivariate data analysis. J Chromatogr A. 2006;1117:87–93.PubMedGoogle Scholar
  160. 160.
    Zurbig P, Renfrow MB, Schiffer E, et al. Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 2006;27:2111–25.PubMedGoogle Scholar
  161. 161.
    Lescuyer P, Hochstrasser D, Rabilloud T. How Shall We Use the Proteomics Toolbox for Biomarker Discovery? J Proteome Res. 2007;6:3371–6.PubMedGoogle Scholar
  162. 162.
    Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005;5:3226–45.PubMedGoogle Scholar
  163. 163.
    Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.PubMedGoogle Scholar
  164. 164.
    Fliser D, Novak J, Thongboonkerd V, et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007;18:1057–71.PubMedGoogle Scholar
  165. 165.
    Davis MT, Spahr CS, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. II. Limitations of complex mixture analyses. Proteomics 2001;1:108–17.PubMedGoogle Scholar
  166. 166.
    Spahr CS, Davis MT, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 2001;1:93–107.PubMedGoogle Scholar
  167. 167.
    Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7:R80.PubMedGoogle Scholar
  168. 168.
    Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 2005;26:2797–808.PubMedGoogle Scholar
  169. 169.
    Theodorescu D, Wittke S, Ross MM, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006;7:230–40.PubMedGoogle Scholar
  170. 170.
    Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.PubMedGoogle Scholar
  171. 171.
    Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004;103:767–76.PubMedGoogle Scholar
  172. 172.
    Hambach L, Eder M, Dammann E, et al. Diagnostic value of procalcitonin serum levels in comparison with C-reactive protein in allogeneic stem cell transplantation. Haematologica 2002;87:643–51.PubMedGoogle Scholar
  173. 173.
    Seidel C, Ringden O, Remberger M. Increased levels of syndecan-1 in serum during acute graft-versus-host disease. Transplantation 2003;76:423–6.PubMedGoogle Scholar
  174. 174.
    Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology. Blood 2004;103:3624–34.PubMedGoogle Scholar
  175. 175.
    Weissinger EM, Mischak H, Ganser A, Hertenstein B. Value of proteomics applied to the follow-up in stem cell transplantation. Ann Hematol. 2006;85:205–11.PubMedGoogle Scholar
  176. 176.
    Weissinger EM, Hertenstein B, Mischak H, Ganser A. Online coupling of capillary electrophoresis with mass spectrometry for the identification of biomarkers for clinical diagnosis. Expert Rev Proteomics. 2005;2:639–47.PubMedGoogle Scholar
  177. 177.
    Kaiser T, Wittke S, Just I, et al. Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis 2004;25:2044–55.PubMedGoogle Scholar
  178. 178.
    Weissinger EM, Wittke S, Kaiser T, et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int. 2004;65:2426–34.PubMedGoogle Scholar
  179. 179.
    Kaiser T, Kamal H, Rank A, et al. Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 2004;104:340–9.PubMedGoogle Scholar
  180. 180.
    Weissinger EM, Schiffer E, Hertenstein B, et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 2007;109:5511–9.PubMedGoogle Scholar
  181. 181.
    Wang H, Clouthier SG, Galchev V, et al. Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Mol Cell Proteomics. 2005;4:618–25.PubMedGoogle Scholar
  182. 182.
    Srinivasan R, Daniels J, Fusaro V, et al. Accurate diagnosis of acute graft-versus-host disease using serum proteomic pattern analysis. Exp Hematol. 2006;34:796–801.PubMedGoogle Scholar
  183. 183.
    Imanguli MM, Atkinson JC, Harvey KE, et al. Changes in salivary proteome following allogeneic hematopoietic stem cell transplantation. Exp Hematol. 2007;35:184–92.PubMedGoogle Scholar
  184. 184.
    Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006;6:3189–98.PubMedGoogle Scholar
  185. 185.
    Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005;5:3262–77.PubMedGoogle Scholar
  186. 186.
    Rai AJ, Vitzthum F. Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics. Expert Rev Proteomics. 2006;3:409–26.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationCarl-Neuberg-Str.1Germany

Personalised recommendations