Advancement and Clinical Implications of HLA Typing in Allogeneic Hematopoietic Stem Cell Transplantation

  • Lee Ann Baxter-Lowe
  • Carolyn Katovich Hurley
Part of the Cancer Treatment and Research book series (CTAR, volume 144)


One of the best established risk factors for hematopoietic stem cell transplantation (HSCT) is human leukocyte antigen (HLA) disparity between the recipient and donor. HLA disparity has been associated with graft failure, delayed immune reconstitution, graft-versus-host disease (GvHD), and mortality. These undesirable effects can be offset somewhat by reduced relapse rates in patients with hematological malignancies. This chapter reviews current understanding of HLA biology and its clinical implications.

Several relatively recent advances have dramatically changed this field. Perhaps the most important of these is development of DNA-based HLA typing, which has made it possible to define HLA disparities at an amino acid level. Advances in HLA typing have been complemented by improved matching algorithms utilized by unrelated donor registries. There have also been breakthroughs in the understanding of the molecular mechanisms of allorecognition. For decades, research and...


Human Leukocyte Antigen Human Leukocyte Antigen Class Cord Blood Transplantation Human Leukocyte Antigen Allele Human Leukocyte Antigen Typing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Shauna O’Donnell and Ronen Kaley for their assistance with the figures and formatting.


  1. 1.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987;329:506–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987;329:512–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown JH, Jardetzky TS, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993;364:33–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Stern LJ, Brown JH, Jardetzky TS, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994;368:215–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587–622.PubMedCrossRefGoogle Scholar
  6. 6.
    Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14.PubMedCrossRefGoogle Scholar
  8. 8.
    van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004;16:67–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Singh NJ, Schwartz RH. Primer: mechanisms of immunologic tolerance. Nat Clin Pract Rheumatol. 2006;2:44–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Parham P. Taking license with natural killer cell maturation and repertoire development. Immunol Rev. 2006;214:155–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Burrows SR, Khanna R, Burrows JM, Moss DJ. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J Exp Med. 1994;179:1155–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Whitelegg AM, Oosten LE, Jordan S, et al. Investigation of peptide involvement in T cell allorecognition using recombinant HLA class I multimers. J Immunol. 2005;175:1706–14.PubMedGoogle Scholar
  13. 13.
    Smith PA, Brunmark A, Jackson MR, Potter TA. Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL). J Exp Med. 1997;185:1023–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber DA, Terrell NK, Zhang Y, et al. Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J Immunol. 1995;154:5153–64.PubMedGoogle Scholar
  15. 15.
    Eckels DD, Gorski J, Rothbard J, Lamb JR. Peptide-mediated modulation of T-cell allorecognition. Proc Natl Acad Sci USA. 1988;85:8191–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Game DS, Rogers NJ, Lechler RI. Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant. 2005;5:1614–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM. Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol. 2001;166:3717–23.PubMedGoogle Scholar
  18. 18.
    Herrera OB, Golshayan D, Tibbott R, et al. A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 2004;173:4828–37.PubMedGoogle Scholar
  19. 19.
    Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004;104:3257–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Hambach L, Spierings E, Goulmy E. Risk assessment in haematopoietic stem cell transplantation: minor histocompatibility antigens. Best Pract Res Clin Haematol. 2007;20:171–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Witt CS, Christiansen FT. The relevance of natural killer cell human leucocyte antigen epitopes and killer cell immunoglobulin-like receptors in bone marrow transplantation. Vox Sang. 2006;90:10–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Hsu KC, Gooley T, Malkki M, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999;94:333–9.PubMedGoogle Scholar
  24. 24.
    Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007;110:433–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol. 2004;41:569–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Yokoyama WM, Kim S. How do natural killer cells find self to achieve tolerance? Immunity 2006;24:249–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Ottinger HD, Rebmann V, Pfeiffer KA, et al. Positive serum crossmatch as predictor for graft failure in HLA-mismatched allogeneic blood stem cell transplantation. Transplantation 2002;73:1280–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.PubMedCrossRefGoogle Scholar
  29. 29.
    Miklos DB, Kim HT, Miller KH, et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood 2005;105:2973–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Wright CA, Kozik P, Zacharias M, Springer S. Tapasin and other chaperones: models of the MHC class I loading complex. Biol Chem. 2004;385:763–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Busch R, Rinderknecht CH, Roh S, et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev. 2005;207:242–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Kitcharoen K, Witt CS, Romphruk AV, Christiansen FT, Leelayuwat C. MICA, MICB, and MHC beta block matching in bone marrow transplantation: relevance to transplantation outcome. Hum Immunol. 2006;67:238–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Mungall AJ, Palmer SA, Sims SK, et al. The DNA sequence and analysis of human chromosome 6. Nature 2003;425:805–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Bochtler W, Maiers M, Oudshoorn M, et al. World Marrow Donor Association guidelines for use of HLA nomenclature and its validation in the data exchange among hematopoietic stem cell donor registries and cord blood banks. Bone Marrow Transplant. 2007;39:737–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernandez-Vina MA. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol. 2001;62:1009–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Maiers M, Gragert L, Klitz W. High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol. 2007;68:779–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Mori M, Beatty PG, Graves M, Boucher KM, Milford EL. HLA gene and haplotype frequencies in the North American population: the National Marrow Donor Program Donor Registry. Transplantation 1997;64:1017–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Hurley CK, Fernandez-Vina M, Setterholm M. Maximizing optimal hematopoietic stem cell donor selection from registries of unrelated adult volunteers. Tissue Antigens. 2003;61:415–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Noreen HJ, Yu N, Setterholm M, et al. Validation of DNA-based HLA-A and HLA-B testing of volunteers for a bone marrow registry through parallel testing with serology. Tissue Antigens. 2001;57:221–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hurley CK, Baxter-Lowe LA, Begovich AB, et al. The extent of HLA class II allele level disparity in unrelated bone marrow transplantation: analysis of 1259 National Marrow Donor Program donor-recipient pairs. Bone Marrow Transplant. 2000;25:385–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Hurley CK, Fernandez-Vina M, Hildebrand WH, et al. A high degree of HLA disparity arises from limited allelic diversity: analysis of 1775 unrelated bone marrow transplant donor-recipient pairs. Hum Immunol. 2007;68:30–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Marsh SG, Albert ED, Bodmer WF, et al. Nomenclature for factors of the HLA system, 2004. Int J Immunogenet. 2005;32:107–59.PubMedCrossRefGoogle Scholar
  44. 44.
    Voorter CE, Mulkers E, Liebelt P, Sleyster E, van den Berg-Loonen EM. Reanalysis of sequence-based HLA-A, -B and -Cw typings: how ambiguous is today’s SBT typing tomorrow. Tissue Antigens. 2007;70:383–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Cano P, Klitz W, Mack SJ, et al. Common and well-documented HLA alleles: report of the Ad-Hoc Committee of the American Society for Histocompatiblity and Immunogenetics. Hum Immunol. 2007;68:392–417.PubMedCrossRefGoogle Scholar
  46. 46.
    Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335:157–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Kamani N, Spellman S, Hurley CK, et al. State of the art review: HLA matching and outcome of unrelated donor umbilical cord blood transplants. Biol Blood Marrow Transplant. 2008;14:1–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Barker JN, Krepski TP, DeFor TE, Davies SM, Wagner JE, Weisdorf DJ. Searching for unrelated donor hematopoietic stem cells: availability and speed of umbilical cord blood versus bone marrow. Biol Blood Marrow Transplant. 2002;8:257–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76:634–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Beatty PG, Clift RA, Mickelson EM, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313:765–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu DP, Dong L, Wu T, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 2006;107:3065–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Caillat-Zucman S, Le Deist F, Haddad E, et al. Impact of HLA matching on outcome of hematopoietic stem cell transplantation in children with inherited diseases: a single-center comparative analysis of genoidentical, haploidentical or unrelated donors. Bone Marrow Transplant. 2004;33:1089–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Anasetti C, Beatty PG, Storb R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29:79–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Kernan NA, Flomenberg N, Dupont B, O’Reilly RJ. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation 1987;43:842–7.PubMedGoogle Scholar
  55. 55.
    Soiffer RJ, Mauch P, Tarbell NJ, et al. Total lymphoid irradiation to prevent graft rejection in recipients of HLA non-identical T cell-depleted allogeneic marrow. Bone Marrow Transplant. 1991;7:23–33.PubMedGoogle Scholar
  56. 56.
    Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340:508–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 1994;84:3948–55.PubMedGoogle Scholar
  58. 58.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097–100.PubMedCrossRefGoogle Scholar
  59. 59.
    van den Boogaardt DE, van Rood JJ, Roelen DL, Claas FH. The influence of inherited and noninherited parental antigens on outcome after transplantation. Transpl Int. 2006;19:360–71.PubMedCrossRefGoogle Scholar
  60. 60.
    van Rood JJ, Loberiza FR Jr, Zhang MJ, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 2002;99:1572–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshihara T, Okada K, Kobayashi M, et al. Outcome of non-T-cell-depleted HLA-haploidentical hematopoietic stem cell transplantation from family donors in children and adolescents. Int J Hematol. 2007;85:246–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Oudshoorn M, Horn PA, Tilanus M, Yu N. Typing of potential and selected donors for transplant: methodology and resolution. Tissue Antigens. 2007;69 Suppl 1:10–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Mickelson EM, Bartsch GE, Hansen JA, Dupont B. The MLC assay as a test for HLA-D region compatibility between patients and unrelated donors: results of a national marrow donor program involving multiple centers. Tissue Antigens. 1993;42:465–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Oudshoorn M, Doxiadis, II, van den Berg-Loonen PM, Voorter CE, Verduyn W, Claas FH. Functional versus structural matching: can the CTLp test be replaced by HLA allele typing? Hum Immunol. 2002;63:176–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Gaziev D, Galimberti M, Lucarelli G, et al. Bone marrow transplantation from alternative donors for thalassemia: HLA-phenotypically identical relative and HLA-nonidentical sibling or parent transplants. Bone Marrow Transplant. 2000;25:815–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Drobyski WR, Klein J, Flomenberg N, et al. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood 2002;99:806–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Bunin N, Aplenc R, Leahey A, et al. Outcomes of transplantation with partial T-cell depletion of matched or mismatched unrelated or partially matched related donor bone marrow in children and adolescents with leukemias. Bone Marrow Transplant. 2005;35:151–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Mielcarek M, Storer BE, Sandmaier BM, et al. Comparable outcomes after nonmyeloablative hematopoietic cell transplantation with unrelated and related donors. Biol Blood Marrow Transplant. 2007;13:1499–507.PubMedCrossRefGoogle Scholar
  69. 69.
    Petersdorf E, Bardy P, Cambon-Thomsen A, et al. 14th International HLA and Immunogenetics Workshop: report on hematopoietic cell transplantation. Tissue Antigens. 2007;69 Suppl 1:17–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Flomenberg N, Baxter-Lowe LA, Confer D, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 2004;104:1923–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee SJ, Klein J, Haagenson M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007;110:4576–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Morishima Y, Sasazuki T, Inoko H, et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood 2002;99:4200–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Morishima Y, Yabe T, Matsuo K, et al. Effects of HLA allele and killer immunoglobulin-like receptor ligand matching on clinical outcome in leukemia patients undergoing transplantation with T-cell-replete marrow from an unrelated donor. Biol Blood Marrow Transplant. 2007;13:315–28.PubMedCrossRefGoogle Scholar
  74. 74.
    Petersdorf EW, Anasetti C, Martin PJ, et al. Limits of HLA mismatching in unrelated hematopoietic cell transplantation. Blood 2004;104:2976–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Sasazuki T, Juji T, Morishima Y, et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N Engl J Med. 1998;339:1177–85.PubMedCrossRefGoogle Scholar
  76. 76.
    Shaw BE, Gooley TA, Malkki M, et al. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood 2007;110:4560–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Gallardo D, Brunet S, Torres A, et al. Hla-DPB1 mismatch in HLA-A-B-DRB1 identical sibling donor stem cell transplantation and acute graft-versus-host disease. Transplantation 2004;77:1107–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Zino E, Vago L, Di Terlizzi S, et al. Frequency and targeted detection of HLA-DPB1 T cell epitope disparities relevant in unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13:1031–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Fleischhauer K, Locatelli F, Zecca M, et al. Graft rejection after unrelated donor hematopoietic stem cell transplantation for thalassemia is associated with nonpermissive HLA-DPB1 disparity in host-versus-graft direction. Blood 2006;107:2984–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Zino E, Frumento G, Marktel S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood 2004;103:1417–24.PubMedCrossRefGoogle Scholar
  81. 81.
    Loiseau P, Busson M, Balere ML, et al. HLA Association with hematopoietic stem cell transplantation outcome: the number of mismatches at HLA-A, -B, -C, -DRB1, or -DQB1 is strongly associated with overall survival. Biol Blood Marrow Transplant. 2007;13:965–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Petersdorf EW, Hansen JA, Martin PJ, et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N Engl J Med. 20 2001;345:1794–800.CrossRefGoogle Scholar
  83. 83.
    Morishima Y, Kawase T, Malkki M, Petersdorf EW. Effect of HLA-A2 allele disparity on clinical outcome in hematopoietic cell transplantation from unrelated donors. Tissue Antigens. 2007;69 Suppl 1:31–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Elsner HA, DeLuca D, Strub J, Blasczyk R. HistoCheck: rating of HLA class I and II mismatches by an internet-based software tool. Bone Marrow Transplant. 2004;33:165–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Heemskerk MB, Doxiadis, II, Roelen DL, Claas FH, Oudshoorn M. The HistoCheck algorithm does not predict T-cell alloreactivity in vitro. Bone Marrow Transplant. 2005;36:927–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Shaw BE, Barber LD, Madrigal JA, Cleaver S, Marsh SG. Scoring for HLA matching? A clinical test of HistoCheck. Bone Marrow Transplant. 2004;34:367–8;author reply 369.PubMedCrossRefGoogle Scholar
  87. 87.
    Kawase T, Morishima Y, Matsuo K, et al. High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism. Blood 2007;110:2235–41.PubMedCrossRefGoogle Scholar
  88. 88.
    Halloran PF, Reeve J, Kaplan B. Lies, damn lies, and statistics: the perils of the P value. Am J Transplant. 2006;6:10–1.PubMedCrossRefGoogle Scholar
  89. 89.
    Urbano-Ispizua A. Risk assessment in haematopoietic stem cell transplantation: stem cell source. Best Pract Res Clin Haematol. 2007;20:265–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Hurley CK, Baxter Lowe LA, Logan B, et al. National Marrow Donor Program HLA-matching guidelines for unrelated marrow transplants. Biol Blood Marrow Transplant. 2003;9:610–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Ottinger HD, Muller CR, Goldmann SF, et al. Second German consensus on immunogenetic donor search for allotransplantation of hematopoietic stem cells. Ann Hematol. 2001;80:706–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Horn PA, Elsner HA, Blasczyk R. Tissue typing for hematopoietic cell transplantation: HLA-DQB1 typing should be included. Pediatr Transplant. 2006;1:753–4.CrossRefGoogle Scholar
  93. 93.
    Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 1996;88:795–802.PubMedGoogle Scholar
  94. 94.
    Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565–77.PubMedCrossRefGoogle Scholar
  95. 95.
    Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337:373–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Gluckman E, Rocha V, Arcese W, et al. Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol. 2004;32:397–407.PubMedCrossRefGoogle Scholar
  97. 97.
    Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002;100:1611–8.PubMedGoogle Scholar
  98. 98.
    Eapen M, Rubinstein P, Zhang MJ, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007;369:1947–54.PubMedCrossRefGoogle Scholar
  99. 99.
    Gluckman E, Rocha V. Donor selection for unrelated cord blood transplants. Curr Opin Immunol. 2006;18:565–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–75.PubMedCrossRefGoogle Scholar
  101. 101.
    Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Ballen KK, Spitzer TR, Yeap BY, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant. 2007;13:82–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Brunstein CG, Barker JN, Weisdorf DJ, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007;110:3064–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Haspel RL, Kao G, Yeap BY, et al. Preinfusion variables predict the predominant unit in the setting of reduced-intensity double cord blood transplantation. Bone Marrow Transplant. 2008;41:523–9.Google Scholar
  105. 105.
    Cornetta K, Laughlin M, Carter S, et al. Umbilical cord blood transplantation in adults: results of the prospective Cord Blood Transplantation (COBLT). Biol Blood Marrow Transplant. 2005;11:149–60.PubMedCrossRefGoogle Scholar
  106. 106.
    Kogler G, Enczmann J, Rocha V, Gluckman E, Wernet P. High-resolution HLA typing by sequencing for HLA-A, -B, -C, -DR, -DQ in 122 unrelated cord blood/patient pair transplants hardly improves long-term clinical outcome. Bone Marrow Transplant. 2005;36:1033–41.PubMedCrossRefGoogle Scholar
  107. 107.
    Ohnuma K, Isoyama K, Ikuta K, et al. The influence of HLA genotyping compatibility on clinical outcome after cord blood transplantation from unrelated donors. J Hematother Stem Cell Res. 2000;9:541–50.PubMedCrossRefGoogle Scholar
  108. 108.
    Dupont B, Hsu KC. Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr Opin Immunol. 2004;16:634–43.PubMedCrossRefGoogle Scholar
  109. 109.
    Cooley S, McCullar V, Wangen R, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 2005;106:4370–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Miller JS, Cooley S, Parham P, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 2007;109:5058–61.PubMedCrossRefGoogle Scholar
  111. 111.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105:3051–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Petersdorf EW, Malkki M, Gooley TA, Martin PJ, Guo Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. Jan 2007;4:e8.PubMedCrossRefGoogle Scholar
  113. 113.
    Dickinson AM, Harrold JL, Cullup H. Haematopoietic stem cell transplantation: can our genes predict clinical outcome? Expert Rev Mol Med. 2007;9:1–19.PubMedCrossRefGoogle Scholar
  114. 114.
    Dickinson AM, Middleton PG. Beyond the HLA typing age: genetic polymorphisms predicting transplant outcome. Blood Rev. Nov 2005;19:333–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations